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SARS-CoV-2 variant
infectivity predicted via
comparative molecular
dynamics simulation
Madhusudan Rajendran and Gregory A. Babbitt

Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester,
NY 14623, USA

MR, 0000-0003-4451-9608; GAB, 0000-0003-4421-6527

Widespread human transmission of SARS-CoV-2 highlights the
substantial public health, economic and societal consequences of
virus spillover from wildlife and also presents a repeated risk
of reverse spillovers back to naive wildlife populations. We
employ comparative statistical analyses of a large set of short-
term molecular dynamic (MD) simulations to investigate the
potential human-to-bat (genus Rhinolophus) cross-species
infectivity allowed by the binding of SARS-CoV-2 receptor-
binding domain (RBD) to angiotensin-converting enzyme 2
(ACE2) across the bat progenitor strain and emerging human
strain variants of concern (VOC). We statistically compare the
dampening of atom motion across protein sites upon the
formation of the RBD/ACE2 binding interface using various
bat versus human target receptors (i.e. bACE2 and hACE2).
We report that while the bat progenitor viral strain RaTG13
shows some pre-adaption binding to hACE2, it also exhibits
stronger affinity to bACE2. While early emergent human
strains and later VOCs exhibit robust binding to both hACE2
and bACE2, the delta and omicron variants exhibit
evolutionary adaption of binding to hACE2. However, we
conclude there is a still significant risk of mammalian cross-
species infectivity of human VOCs during upcoming waves
of infection as COVID-19 transitions from a pandemic to
endemic status.
1. Introduction
Coronavirus disease (COVID-19) is caused by novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus
first emerged in the Wuhan province in China [1,2]. Since its
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emergence, the virus has had a devastating effect on the world’s population, resulting in more than 5.5
million deaths worldwide [3]. Since being declared a global pandemic by the World Health Organization
(WHO) on 11 March 2020, the virus continues to cause devastation, with several countries enduring
multiple waves of outbreaks of this viral illness. A variety of mathematical model types, including
statistical, deterministic, stochastics and agent-based models have used to study the transmission
dynamics and control of COVID-19 [4–7]. Traditional theories applied to the viral epidemiology of
COVID-19 have extended the compartmental modelling approach pioneered by Kermack and
McKendrick (i.e. SIR model) [8] as well as the concept of the evolutionary arms race derived from
evolutionary game theory introduced by Maynard-Smith [9] as an extension of Nash [10]. Modern
advances in high-throughput DNA sequencing have allowed COVID-19 forecasting to be better
parameterized with regard to real-time sequence-based surveillance as well as temporal-spatial
patterns of behaviour in viral-infected human populations [11]. Recently, the epidemiological
modelling community has also recognized the need to model beyond simple viral infection rates in
human populations and to incorporate information regarding human interactions with other species
and environments that lead to zoonotic spillover events (e.g. the OneHealth framework) [12]. In this
regard, some key questions of concern raised by the ongoing pandemic that are particularly difficult
to address with compartmental modelling in epidemiology are (A) what are the general molecular
properties of proteins that facilitate viral spillovers between two or more species?, (B) how does the
random occurrence (i.e. neutral evolution) of these properties relate to the frequency or likelihood of
zoonotic spillovers of viruses between species?, and (C) how long might it take after a spillover to
humans for a highly virulent emergent strain to evolve to lose these properties and become a more
benign endemic species-specific strain?

The initial outbreak of COVID-19 was initially linked to a local seafood market in Wuhan, China,
where the sale of wild animals has been implicated as the primary source of SARS-CoV-2 infections
[13]. Furthermore, the current SARS-CoV-2 virus is known to have 96.2% similarity to the bat
coronavirus RaTG13 at the whole genome level [14,15]. Based on the viral genome sequence and
further evolutionary analysis, Chinese horseshoe bats of genus Rhinolophus have been pinpointed as
the most likely natural reservoir host for the recent emergence of the SARS-CoV-2 virus [16].
However, as of now, no definitive intermediate host that may be more closely associated with humans
(e.g. domestic pets or livestock) has been identified. Interestingly, based on the isolation of closely
related genomes from Malayan pangolins (Manis javanica), they are thought to be possible
intermediate hosts of the SARS-CoV-2 via wildlife markets in Wuhan [17].

Since its initial spillover from Rhinolophus bats and subsequent introduction to the global human
population, the genome of SARS-CoV-2 has mutated. As a result, thousands of variants of SARS-CoV-
2 have emerged [18]. The WHO defined the SARS-CoV-2 variants of concern (VOC) as a variant with
increased transmissibility, virulence and decreased response to available diagnostics, vaccines and
therapeutics [19]. Based on the recent epidemiological update by WHO, as of 10 January 2022, five
SARS-CoV-2 VOCs have been identified since the pandemic’s beginning [20]. Alpha (B.1.1.7) was the
first VOC described in the United Kingdom in late December 2020. Then came the beta (B.1.351) and
Gamma (P.1) variants which were first reported in South Africa in December 2020 and Brazil in
January 2021, respectively. Until October 2021, Delta (B.1.617.2) has been the most dominant variant.
It was first reported in India in December 2020. Lastly, the Omicron (B.1.1.529, BA.1, BA.2, BA.3, BA.4
and BA.5) variants have become the most dominant strains worldwide, since their probable origin in
South Africa in late November 2021 [19].

The virus’s origin from the spillover of a zoonotic pathogen, and the broad host range of the virus is
partly because its ACE2 target receptor is found in all major vertebrate groups [21]. The ubiquity of ACE2
coupled with the high prevalence of SARS-CoV-2 in the global human population explains the multiple
spillback infections since the emergence of the virus in 2019. In spillback infection, the human hosts
transmit the SARS-CoV-2 virus to cause infection in non-human animals. In addition to threating
wildlife and domestic animals, the repeated spillback infection may lead to the establishment of new
animal hosts from which SARS-CoV-2 can then pose a risk of secondary spillover infection to humans
through bridge hosts or new established enzootic reservoirs. There are a small number of reports of
human-to-animal transmission of SARS-CoV-2 in pet cats and dogs and gorillas, tigers, lions and
other felines in zoos in the USA, Europe and South Africa [22,23]. Initial human-to-animal
transmission has resulted in sustained outbreaks in farmed mink in Europe and North America, with
likely mink-to-human transmission reported in the Netherlands [24,25]. More recently, there have been
some accounts of reverse spillover of VOC strains, including Omicron, into wild North American
white-tailed deer populations [26–28]. Experimental infection of Egyptian fruit bats (Rousettus
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aegyptiacus) resulted in transient subclinical infection with oral and faecal shedding [29]. Given that the
probable sources of SARS-CoV-2 or its progenitor are bat species, the potential risk of reverse zoonotic
transmission from humans to bats and the subsequent negative impacts have to be recognized and
studied. Furthermore, a significant concern in such secondary spillover events is the subsequent
evolution of mutant strains leading to increased transmissibility and/or mortality in humans, reduced
sensitivity to neutralizing antibodies and reduced vaccine efficacy.

A very crucial and unresolved key question of concern regarding the continued evolution of this
pandemic is whether and how long the human VOC’s remain capable of reverse spillovers into other
species of mammals as they adapt their binding to more specifically target human ACE2. We have
recently introduced new statistical applications for comparing the divergence of short-term rapid MD
of proteins in functionally relevant molecular binding states (i.e. comparing the divergence of atom
fluctuation between bound versus unbound protein states) [30–32]. We have applied this
computational method to study of the evolution of emergent and endemic viral strains related to
SARS-CoV-2 [33] and to the study of the evolution of antibody-binding escape mutations as well [34].
Here, we use this same comparative molecular dynamics-based approach to study individual amino
acid sites involved in the binding of the various strains of the SARS-CoV-2 viral receptor-binding
domain (RBD) to both the human and various Rhinolophus bat ACE2 orthologs (hACE2 and bACE2
resp.). We present multiple-test corrected site-wise statistical comparisons of the SARS-CoV-2 RBD
binding signatures of all currently reported VOCs in the presence of both hACE2 and various bACE2,
identifying sites that have led to significantly increased hACE2 binding of SARS-CoV-2 related viral
strains as they evolved during the course of the pandemic. We report that while some specific
adaptations to hACE2 have emerged in the Delta and Omicron VOC, there is still a persistent risk of
reverse spillover to bats and likely many other mammals even several years after the start of the
pandemic.
2. Material and methods
2.1. PDB structure and model preparation
Structures of the RBD of spike proteins, hACE2, Big-Eared horseshoe bat Rhinolophus macrotis, bACE2,
and ACE2 from other different bat species (Rhinolophus sinicus [Chinese rufous horseshoe bat],
Rhinolophus affinis [Intermediate horseshoe bat] and Rhinolophus ferrumequinum [Greater horseshoe
bat]) were either obtained from the Protein Data Bank (PDB) or modelled using Alphafold2. The
summary of the structures used for MD simulations is listed in table 1. Upon downloading the
structures from PDB, any crystallographic reflections and other small molecules used in crystallization
were removed. During the cleanup of the PDB, any glycans were removed and then later rebuilt using
glycoprotein builder [35] so that the PDB file structure regarding atom types was compatible with the
Amber 20 preprocessing software tLeAP [36]. See details below. When preparing the structures, we
needed each of the variants (RaTG13, Wuhan WT, Alpha, Beta, Delta, Kappa, Epsilon, Omicron BA.1,
Omicron BA.2 and Omicron BA.4/BA.5) bound to hACE2 and bACE2. We were able to find
structures in the PDB where the RaTG13 variant was bound to bACE2 and the human variants bound
to hACE2. Therefore, to model the RaTG13 variant bound to hACE2 and the human variants bound
to bACE2, we used UCSF Chimera’s MatchMaker superposition tool to properly place the receptor
belonging to the opposite species [37]. Using pdb4amber (AmberTools20), hydrogen atoms were
added, and crystallographic waters were removed [36]. Any missing loop structures in the files were
inferred via homology modelling using the ‘refine loop’ command to modeller within UCSF chimera
[38,39]. The structure of Omicron BA.2 RBD was not available on PDB, and therefore Alphafold2 was
used to create a three-dimensional structure, details of which are given below. Similarly, Alphafold2
was used to model ACE2 of R. affinis, R. macrotis and R. ferrumquinum.

2.2. Model glycosylation
Asmentioned previously, glycans present in the original PDB structurewere deleted. Predicted glycosylation
was rebuilt for the Amber forcefield using the glycoprotein builder on the glycam.org web server [35]. The
glycans were rebuilt using the GLYCAM-06j-1 force field [40]. 2-Acetamido-2-deoxy-beta-D-glucopyranose
was attached toASN10 in the RBDof all variants. Similarly, 2-acetamido-2-deoxy-beta-D-glucopyranosewas
attached to ASN227, ASN264 and ASN503 and 2-acetamido-2-deoxy-beta-D-glucopyranose-(1–4)-



Table 1. Table summarizing the primary models (RBD variants bound to hACE2/bACE2) used for MD simulations. bACE2 denotes
ACE2 from R. macrotis, and hACE2 denotes ACE2 from H. sapiens.

RBD variant PDB ID receptor PDB ID

RaTG13 (BatCoV) 7CN4 bACE2 (R. macrotis ACE2) 7C8J

RaTG13 (BatCoV) 7CN4 hACE2 (H. sapiens ACE2) 6VW1

Wuhan WT (nCoV) 7C8D bACE2(R. macrotis ACE2) 7C8J

Wuhan WT (nCoV) 7C8D hACE2 (H. sapiens ACE2) 6VW1

Alpha (B.1.1.7) 7LWV bACE2 (R. macrotis ACE2) 7C8J

Alpha (B.1.1.7) 7LWV hACE2 (H. sapiens ACE2) 6VW1

Beta (B.1.351) 7LYO bACE2 (R. macrotis ACE2) 7C8J

Beta (B.1.351) 7LYO hACE2 (H. sapiens ACE2) 6VW1

Delta (B.1.617.2) 7V7Q bACE2 (R. macrotis ACE2) 7C8J

Delta (B.1.617.2) 7V7Q hACE2 (H. sapiens ACE2) 6VW1

Kappa (B.1.617.1) 7V7E bACE2 (R. macrotis ACE2) 7C8J

Kappa (B.1.617.1) 7V7E hACE2 (H. sapiens ACE2) 6VW1

Epsilon (B.1.429) 7N8H bACE2 (R. macrotis ACE2) 7C8J

Epsilon (B.1.429) 7N8H hACE2 (H. sapiens ACE2) 6VW1

Omicron (BA.1) 7T9J bACE2 (R. macrotis ACE2) 7C8J

Omicron (BA.2) 7T9J hACE2 (H. sapiens ACE2) 6VW1

Omicron (BA.2) Alphafold2 bACE2 (R. macrotis ACE2) 7C8J

Omicron (BA.2) Alphafold2 hACE2 (H. sapiens ACE2) 6VW1

Omicron (BA.4/BA.5) 7XNQ bACE2 (R. macrotis ACE2) 7C8J

Omicron (BA.4/BA.5) 7XNQ hACE2 (H. sapiens ACE2) 6VW1

RaTG13 (BatCoV) 7CN4 R. affinis ACE2 Alphafold2

RaTG13 (BatCoV) 7CN4 R. sinicus ACE2 Alphafold2

RaTG13 (BatCoV) 7CN4 R. ferrumequinum ACE2 Alphafold2

Alpha (B.1.1.7) 7LWV R. affinis ACE2 Alphafold2

Alpha (B.1.1.7) 7LWV R. sinicus ACE2 Alphafold2

Alpha (B.1.1.7) 7LWV R. ferrumequinum ACE2 Alphafold2

Omicron (BA.4/BA.5) 7XNQ R. affinis ACE2 Alphafold2

Omicron (BA.4/BA.5) 7XNQ R. sinicus ACE2 Alphafold2

Omicron (BA.4/BA.5) 7XNQ R. ferrumequinum ACE2 Alphafold2
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2-acetamido-2-deoxy-beta-D-glucopyranose was attached to ASN720 of bACE2. Lastly, 2-acetamido-2-
deoxy-beta-D-glucopyranose was attached to ASN271, and 2-acetamido-2-deoxy-beta-D-glucopyranose-
(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose was attached to ASN221, ASN258, ASN490 and
ASN714 of hACE2.

2.3. Molecular dynamic simulation protocols
MD simulation protocol was followed as previously described, with slight modifications [30–32,41].
Briefly, for each MD comparison, large replicate sets of accelerated MD simulations were prepared and
then conducted using the particle mesh Ewald method implemented on the graphical processor unit
(GPU) hardware by pmemd.cuda (Amber20) [42–44]. The MD simulations were either performed on a
Linux mint 19 operating system (two Nvidia RTX 2080 Ti or two Nvidia RTX 3080 Ti) or on high
performance computing cluster (Nvidia A100). All comparative MD analysis via our DROIDS pipeline
was based upon 100 replicate sets of 1 nanosecond accelerated MD run (i.e. 100 × 1 ns MD run in each
comparative state, e.g. RBD bound to the receptor, unbound RBD). Explicitly solvated protein systems
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were first prepared using teLeap (AmberTools 20) using the ff14SB protein forcefield, in conjunction with
the GLYCAM_06j-1 forcefield [40,45]. Solvation was generated using the Tip3p water model in a 12 nm
octahedral water box [46]. Automated charge neutralization was also done with teLeap software with
Na+ and Cl− ions. Each replicate set was preceded by energy minimization, 300 picoseconds of
heating to 300 K, a 10 ns of equilibration, followed by random equilibration intervals for each replicate
ranging from 0 to 0.5 nanoseconds. All simulations were regulated using the Anderson thermostat at
300 K and one atmospheric pressure [47]. Root mean square atom fluctuations were calculated in
CPPTRAJ using the atomicfluct command [48].

2.4. Comparative protein dynamic analyses with DROIDS 4.0 and statistical analyses
Comparative signatures of dampened atom fluctuation during RBD binding to ACE2 were presented as
protein site-wise divergence in atom fluctuation in the ACE2 bound versus unbound states for each RBD.
Divergences were calculated using the signed symmetric Kullback-Leibler (KL) divergence calculation in
DROIDS 4.0. Significance tests and p-values for these site-wise differences were calculated in DROIDS 4.0
using two-sample Kolmogorov-Smirnov tests with the Benjamini-Hochberg multiple test correction in
DROIDS 4.0. The mathematical details of DROIDS 4.0 site-wise comparative protein dynamics
analysis were published previously by our group and can be found here [30–32]. This code is
available at our GitHub web landing: https://gbabbitt.github.io/DROIDS-4.0-comparative-protein-
dynamics/, which is also available at our GitHub repository https://github.com/gbabbitt/DROIDS-4.
0-comparative-protein-dynamics. The supporting data generated by this code for this manuscript are
in repository at Zenodo/CERN https://zenodo.org/record/6477772#.YmMX09rMI2w with digital
identifier https://doi.org/10.5281/zenodo.6477772 [49].

2.5. Alphafold2 three-dimensional prediction
We used Alphafold2 to create predicted protein structures of Omicron BA.2 RBD (Accession # UJE45220.1),
R. affinisACE2 (Accession #QMQ39227.1),R. sinicusACE2 (Accession #AGZ48803.1) andR. ferrumequinum
ACE2 (Acession # BAH02663.1). AlphaFold2 is a neural network-based deep learning model which first
searches for homologous sequences with existing structures to use as a scaffold on which to place the
new sequence [50]. The AlphaFold2-based prediction was run with the ‘single sequence’ mode using the
predicted TM-score (PTM) method. We also specified that the algorithm should run an Amber relaxation
procedure (i.e. energy minimization) to repair any structural violations in the predicted model [51].
3. Results
3.1. Stronger binding of RatG13 RBD to bACE2 than to hACE2
We performed MD simulations of RaTG13 RBD bound and unbound to R. macrotis bACE2 and RaTG13
RBD bound and unbound to hACE2. To compare atomic fluctuations between RatG13 RBD bound and
unbound structures, we used site-wise KL divergence along with multiple test corrected two-sample KS
tests. The more negative the KL divergence value of a specific amino acid residue, the stronger the
dampening of atomic fluctuations due to the RBD interactions with bACE2/hACE2. As one would
expect, the bat RaTG13 RBD has a better binding with stronger amino acid-specific interactions with
the bACE2 (figure 1a,c). However, in the case of hACE2, dampening of atomic fluctuations is lesser at
those specific sites due to ACE2 being of human origin (figure 1a,d). Interestingly, the amino acid
residues involved with the interactions of both bACE2 and hACE2 are very similar. This was
observed in the normalized KL divergence graph, where the normalized KL divergence values per
amino acid are similar between bACE2 and hACE2 (figure 2a). Other studies have found that 26
residues of the bACE2 and nine residues of the RaTG13 RBD are present at the interface. These
residues create 12 H-bonds, two salt bridges and 157 non-bonded contacts [52]. The residues of
RatG13 RBD that are strongly dampened by bACE2 include K417, L455, F456, S477, N487 and D501
(figure 1a). The weaker dampening of atomic fluctuations of RaTG13 RBD and hACE2 is primarily
due to the lesser number of interactions between the RBD and hACE2. Compared to bACE2, hACE2
only makes 113 non-bonded contacts and 9 H-bonds [53]. Lastly, MD comparison of RaTG13 bound
to bACE2 and RaTG13 bound to hACE2 show that almost half of the amino acids in the RBD of
RaTG13 behave statistically differently (figure 1b). When comparing RaTG13 RBD bound to hACE2

https://gbabbitt.github.io/DROIDS-4.0-comparative-protein-dynamics/
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with RaTG13 RBD bound to bACE2, the significance tests are conducted site-wise. Therefore, a separate
test was conducted at each given amino acid site to compare the significant difference in fluctuations of
the backbone atoms. Thus, a separate D value from a two-sample KS test is obtained for each amino acid
site, and a multiple test correction (Benjamini-Hochberg) was applied to adjust the p-value to account for



Figure 2. (Overleaf.) Binding interaction of the different SARS-CoV-2 variants with bACE2 and hACE2. Sequence positional plotting of
normalized dampening of atom motion on (a) RaTG13, (b) Wuhan-Hu-1, (c) Alpha (B.1.1.7), (d ) Beta (B.1.351), (e) Delta
(B.1.617.2), ( f ) Epsilon (B.1.427), (g) Kappa (B.1.617.1), (h) Omicron (BA.1), (i) Omicron (BA.2) and ( j ) Omicron BA.4/BA.5
RBDs by bat ACE2 (bACE2, green) and human ACE2 (hACE2, pink). The amino mutations denoted by the arrows correspond to
the variant mutation. The list of omicron BA.1 mutations in (h) include (1) G339D, (2) S371L, (3) S373P, (4) S375F, (5) K417N,
(6) N440K, (7) G446S, (8) S477N, (9) T478K, (10) E484A, (11) Q493K, (12) G496S, (13) Q498R, (14) N501Y, (15) Y505H. The
list of Omicron BA.2 mutations in (I) include (a) G339D, (b) S371F, (c) S373P, (d ) S375F, (e) T376A, ( f ) D405N, (g) R408S, (h)
K417N, (i) N440K, ( j ) S447N, (k) T478K, (l ) E484A, (m) Q493R, (n) Q498R, (o) N501Y, ( p) Y505H. Lastly the list of Omicron
BA.4/BA.5 mutations in (J) include (1) G339D, (2) S371F, (3) S373P, (4) S375F, (5) T376A, (6) D405N, (7) R408S, (8) K417N,
(9) N440K, (10) L452R, (11) S477N, (12) T478K, (13) E484A, (14) F486V, (15) Q498R, (16) N501Y and (17) Y505H.
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multiple significance tests. Interestingly, there is no statistical difference in the atomic fluctuation dampening
of some of the residues that interact with ACE2. By contrast, a majority of the interacting residues have
statistically different atomic fluctuations between bACE2 and hACE2 (p < 0.001) (figure 1b).
.Open
Sci.9:220600
3.2. Compared with VBM, VOCs have better binding to hACE2 than to bACE2
In addition to RaTG13 RBD bound and unbound to bACE2 and hACE2, we performed MD simulations
of other variants. These variants include the original Wuhan-Hu-1 strain, Alpha (B.1.1.7), Beta (B.1.351),
Delta (B.1.617.2), Epsilon (B.1.427), Kappa (B.1.1617.1), Omicron BA.1, Omicron BA.2 and Omicron
BA.4/BA.5. Both Omicron BA.4 and BA.5 have identical RBD mutations [54]. Similar to RaTG13, the
MD simulation of the different variants included the RBD bound and unbound to bACE2 and hACE2.
Upon calculating the site-wise KL divergence for the RBD bound/unbound of the different variants, we
normalized the KL divergence values. The residue with very little atomic fluctuation dampening was set
to 0, and the residue with the strongest atomic fluctuation dampening was set to 100 (figure 2). Both
RaTG13 and the original Wuhan-Hu-1 RBDs have a similar binding dynamic between the bACE2 and
hACE2. The peaks of normalized KL divergence values between the bACE2 and hACE2 of the two
variants being identical corresponds to the similar amino acid residues interacting with the bACE2 and
hACE2 (figure 2a,b). We performed a similar analysis with the variants being monitored (VBM). The
VBM includes Beta, Epsilon and Kappa variants. Like the original bat progenitor and the first human
variant, the VBM show identical normalized KL divergence plots between the hACE2 and bACE2. Even
at the sites corresponding to the VBM mutation, the KL divergence values appear to be very similar
(figure 2d,f,g). Lastly, we also looked at the VOC’s interactions with bACE2 and hACE2. The VOC
included Alpha, Delta, Omicron BA.1, Omicron BA.2 and Omicron BA.4/BA.5. Surprisingly, with the
Alpha variant, we see very similar normalized KL divergence plots between the bACE2 and hACE2
(figure 2c). However, we see quite a difference in the Delta and Omicron variant plots. The normalized
KL divergence values show additional peaks in the simulations with the hACE2. These additional peaks
correspond to Delta and Omicron mutations (figure 2e,h,i,j).

Lastly, to quantify the interaction of the different variants with bACE2 and hACE2, we also calculated
the area under the curve (AUC) of the non-normalized KL divergence values, true atomic fluctuation
dampening due to the RBD interaction with ACE2. As expected, the bat progenitor strain, RaTG13,
has a higher AUC with bACE2 than hACE2. Since the Wuhuna-Hu-1 RBD is the first variant to make
the transmission from bats to humans, the AUC profile is similar for both bACE2 and hACE2
(figure 3a). Interestingly, all VOC (Alpha, Delta, Omicron BA.1, Omicron BA.2, Omicron BA.4/BA.5)
have a higher AUC for the hACE2 than bACE2. When a paired t-test was performed to compare the
AUC values of the VOC bound to bACE2 and hACE2, we saw a significantly higher AUC profile of
the VOC with hACE2 (figure 3a,b). And lastly, there is no clear trend for the AUC profile of the VBM.
This is also clearly seen with no significant difference in AUC values of VBM between bACE2 and
hACE2 (figure 3a,c).
3.3. Stronger binding of Delta RBD to hACE2 than to bACE2
The Delta variant (B.1.617.2) was first identified in India in October 2020. The two mutations that make
up the RBD of the Delta variant include L452R and T478K. The site-wise KL divergence interaction of the
Delta RBD between bACE2 and hACE2 denotes that hACE2 certainly has better binding dynamics than
the bACE2 (figure 4a). KS test between the Delta RBD bound to bACE2 and Delta RBD bound to hACE2



(a)

(b)

700
p < 0.005

600

500

400

A
U

C

300

200

100

0
Bat Human

ACE2

Kappa
Epsilon
Beta

BA.4/BA.5
BA.2
BA.1
Delta

Alpha

(c)

700
no significance

600

500

400

A
U

C

300

200

100

0
Bat Human

ACE2

600

500

400

300

A
U

C

200

100

0

other VOC

SARS-Cov-2 variants

VBM hACE2

bACE2

Kappa

Epsilon

Beta

BA.4/BA.5

BA.2

BA.1

Delta

Alpha

Wuhan-Hu-1

RatG13
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shows very few amino acids with statistically different atomic fluctuations (35%). About 65% of the
amino acid of Delta RBD behave very similarly when either bound to bACE2 or hACE2. At the sites
corresponding to the Delta variant mutation (L452R and T478K), we see a high level of significance in
the difference in atomic fluctuation between the bACE2 and hACE2 (figure 4b). As mentioned
previously, when comparing Delta RBD bound to hACE2 with Delta RBD bound to bACE2,
significance tests were conducted in a site-wise manner, with a D value from a two-sample KS test
calculated for each amino acid, and Benjamini-Hochberg multiple test correction was applied to adjust
the p-values. The test correction was done to account for the multiple significance tests. Lastly,
compared to bACE2, the binding of the hACE2 also has a dampening effect on the residues that are
farther away from the RBD/ACE2 interface (figure 4c,d).
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3.4. Omicron RBD mutations influence binding to hACE2
Unlike the Delta variant, the Omicron variant was most recently identified in South Africa in November
2021. Compared to all other variants, Omicron variants include at least 15 mutations in the RBD.
Comparison of the atomic fluctuation of the Omicron BA.1 RBD bound to bACE2 and hACE2
revealed certain amino acids with stronger dampening of atomic fluctuations when bound to hACE2
(figure 5a). Furthermore, statistically significant differences in the atomic fluctuation of the Omicron
BA.1 RBD bound to bACE2 and hACE2 are only observed in 30% of the amino acids of the Omicron.
Of those different amino acid positions, nine of them correspond to the Omicron BA.1 RBD mutations
(G339D, S371L, S373P, S345F, K417N, E484A, Q493K, G496S and Q498R) (figure 5b). Similar to the
Delta variant, the RBD of the Omicron variant BA.1 was furthermore stabilized when bound to
hACE2. This can be seen by the dampening of residues by hACE2 that are farther away from the
RBD/hACE2 interface (figure 5d ). However, in the case of the bACE2, there is only dampening
happening at the RBD/bACE2 interface (figure 5c). Identical analysis was also observed with the
Omicron BA.2 variant (electronic supplementary material, figure S1) and the most recent Omicron
BA.4/BA.5 variant (figure 6). Of the three different Omicron strains analysed, Omicron BA.4/BA.5
show the most binding efficacy to hACE2 (figure 6). The binding signatures of human and bat
orthologs of ACE2 in response to the Alpha, Delta and Omicron viral RBD are also given in electronic
supplementary material, figures S2 and S3 and reflect similar trends of enhanced binding during the
evolution of the binding interface.
20600
3.5. ACE2 protein of different bat species display similar binding dynamic with different RBDs
In addition to ACE2 from R. macrotis, we also analysed the binding dynamics of ACE2 from other bat
species with RBDs from RatG13, Alpha and Omicron BA.4/BA.5 variants. The different bat species
includes R. macrotis, R. affinis, R. ferrumequinum and R. sinicus (figure 7c). In summary ACE2 from R.
macrotis, R. affinis, R. ferrumequinum and R. sinicus were simulated with RBD from RatG13, Alpha and
Omicron BA.4/BA.5 variants. The atomic fluctuations of the SARS-CoV-2 variants bound to the four
different bat ACE2s are very identical (electronic supplementary material, figure S4). As mentioned
previously, to quantify the interactions between RBD and ACE2, we also calculated the AUC of the
KL divergence values. The AUC profile is very similar for the different MD simulations we performed
(figure 7a). When the four different bat species were compared group wise we also see no statistical
difference in the AUC values, indicating that the atomic fluctuations of the different RBDs are
identical across different bat ACE2s (figure 7b).
4. Discussion/conclusion
Using our comparative MD simulation pipeline, we compared the binding profile of bACE2 and hACE2
with the RBD domains of different SARS-CoV-2 variants (RaTG13, Wuhan-Hu-1, Alpha, Beta, Delta,
Kappa, Epsilon, Omicron BA.1 and Omicron BA.2). MD simulations of RatG13 spike protein revealed
a better binding profile and stronger dampening of amino acids on the interface of RBD and bACE2
compared to hACE2. In the case of the RBD from Wuhan-Hu-1, the original 2019 SARS-CoV-2 virus,
we see no difference in the binding profile between bACE2 and hACE2. Lastly, we also observed two
different profiles with the VBM and VOC. In the case of VBM (Beta, Kappa and Epsilon variants), we
see a similar binding profile and atomic fluctuation dampening in the RBD/bACE2 and RBD/hACE2
interfaces. On the other hand, VOCs (Alpha, Delta and Omicron variants) show preferable binding to
hACE2 than to bACE2, indicating higher AUC values when RBD is bound to hACE2 than RBD
bound to bACE2.

The SARS-CoV-2 virus was first reported from pneumonia patients of Wuhan city in China’s Hubei
province. The spillover of SARS-CoV-2 from animals to humans occurred at the beginning of December
2019, when some of the pneumonia patients were involved in the wet animal market in the Hunnan
district [55]. Genomic sequences, homology of ACE2 receptor and single intact ORF on gene 8 of the
virus indicate bats as the natural reservoir of these viruses. However, an unknown animal is yet to be
identified as an intermediate host [56,57]. It should be noted that even though the initial spread of the
disease was due to a spillover even, the rapid spread of the disease was primarily due to human-to-
human transmission [55].



(a) AA position (residue number)

350

1

1

3

3

2

2

4

4

5

5

6

6

7

7

8

9

9

8

10

10

11

11

12

12

13

13

14

14

15

15

0

–1

–2

–3
dF

L
U

X
 (

si
gn

ed
 K

L
 d

is
ta

nc
e)

–4

–5

–6

–7

–8

hACE2

bACE2

400 450 500

(b)

70

60

50

40

am
in

o 
ac

id
 (

%
)

30

20

10

0

p < 0.001

p 
< 

0.
00

1

p < 0.05

p 
< 

0.
05

p < 0.01

p 
< 

0.
01

n.s.

n.
s.

0.5

0.4

0.3

D
 v

al
ue

 (
K

S 
te

st
)

0.2

0.1

0.0
350 400

AA position (residue number)

450 500

(c) (d)

hACE2

bACE2

Omicron
RBD

Omicron
RBD

50–550–5

Figure 5. Analysis of atomic fluctuation differences of Omicron BA.1 variant RBD bound to bACE2 and hACE2. (a) Sequence positional
plotting of dampening of atom motion on omicron BA.1 RBD by bat ACE2 (bACE2, green) and human ACE2 (hACE2, pink). (b, left panel)
Multiple test corrected two-sample KS tests of significance for the difference in atomic fluctuations of Omicron BA.1 RBD bound to bACE2
and Omicron BA.1 RBD bound to hACE2. The grey bar in (a) and (b) denotes the RBD domain amino acid backbone with RBD residues of
interaction with ACE2 shown in black. (B, right panel) Percent of amino acid of the Omicron BA.1 RBD with different levels of significance.
n.s. denotes no significance. Arrows in (a) and (b) correspond to the Omicron BA.1 variant mutations. The list of Omicron BA.1 mutations
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G496S, (13) Q498R, (14) N501Y, (15) Y505H. The change in atom fluctuation is due to the (c) bACE2 and (d ) hACE2 interactions with
Omicron RBD (PDB 7T9J). Dark blue denotes a KL divergence value of −5, with red denoting a KL divergence value of +5. bACE2 (PDB
7C8J) is shown in green, and hACE2 (PDB 6VW1) shown in pink.
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Figure 6. Analysis of atomic fluctuation differences of Omicron BA.4/BA.5 variant RBD bound to bACE2 and hACE2. (a) Sequence
positional plotting of dampening of atom motion on Omicron BA.4/BA.5 RBD by bat ACE2 (bACE2, green) and human ACE2 (hACE2,
pink). (b, left panel) Multiple test corrected two-sample KS tests of significance for the difference in atomic fluctuations of Omicron
BA.4/BA.5 RBD bound to bACE2 and Omicron BA.4/BA.5 RBD bound to hACE2. The grey bar in (a) and (b) denotes the RBD domain
amino acid backbone with RBD residues of interaction with ACE2 shown in black. (b, right panel) Percent of amino acid of the
Omicron BA.4/BA.5 RBD with different levels of significance. n.s. denotes no significance. Arrows in (a) and (b) correspond to
the Omicron variant mutations. The list of Omicron BA.4/BA.4 mutations include (a) G339D, (b) S371F, (c) S373P, (d ) S375F, (e)
T376A, ( f ) D405N, (g) R408S, (h) K417N, (i) N440K, ( j ) L452R, (k) S477N, (l ) T478K, (m) E484A, (n) F486V, (o) Q498R, ( p)
N501Y and (q) Y505H. The change in atom fluctuation is due to the (c) bACE2 and (d ) hACE2 interactions with Omicron RBD
(PDB XNQ). Dark blue denotes a KL divergence value of −5, with red denoting a KL divergence value of +5. bACE2 (PDB
7C8J) is shown in green, and hACE2 (PDB 6VW1) shown in pink. RBD domains of Omicron BA.4 and BA.5 are identical and
contain the same mutations between the two variants.
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The receptor usage by the coronavirus has beenwell known to be a significant determinant of host range,
tissue tropism and pathogenesis. Therefore, it is reasonable to assume that SARS-CoV-2 can infect humans,
bats and other species.As amatter of fact, several in vivo infection and seroconversion studies have confirmed
that SARS-CoV-2 can infect rhesusmonkeys, feline, ferret and canines [58,59]. OurMDsimulation has shown
that RaTG13 RBD can bind to both bACE2 and hACE2, however to bACE2 with stronger binding, shown by
severe dampening of atomic fluctuations in the bACE2/RBD interface (figure 1a). Even though hACE2
doesn’t severely dampen the atomic fluctuations, the KL divergence profile is very similar to that of
bACE2, indicating the flexibility of the virus to jump hosts. Additionally, it has also been shown that the
RatG13 RBD Y493 is speculated to confer a potential steric clash to hACE2 [60].

As mentioned previously, for zoonotic spillover events to occur, humans must be exposed to the
viruses. This can occur through direct contact with viruses excreted from infected bats or bridge hosts
or through other contacts with infected animals such as slaughtering or butchering. The nature and
intensity of the bat–human interface are critical to determining spillover risk. Human behaviour is a
primary determinant of exposure, which may increase contact with bats or with other animals (bridge
hosts) that may expose susceptible humans. Little is known about the specific conditions of
coronavirus spillovers. Still, human behaviours that may increase viral exposure include activities such
as bat hunting and consumption, guano farming and wildlife trading [52–54,61–63]. Due to recent
spillover events, we see an identical binding profile with both bACE2 and hACE2 in the case of
Wuhan-Hu-1 RBD (figure 2b). In the case of Wuhan-Hu-1 RBD, our MD simulation shows identical
dampening of the atomic fluctuations and that the amino acid backbone in the RBD interacts with
both bACE2 and hACE2 identically.
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Regardless, in the case of human SARS-CoV-2 strains, we see a slightly different trend. In the case of
VOC, including Alpha, Delta and Omicron variants, we see a slightly higher binding profile with hACE2
than bACE2 (figures 3a,b and 4–6). However, unlike RaTG13 RBD, we do not see very strong differences
in the atomic fluctuations in the bACE2/hACE2 interface with the VOC RBDs. We don’t see any
significant differences in the binding profile with the VBM, including Beta, Epsilon and Kappa
variants. At some areas of the RBD, the atomic fluctuations of the VBM are very similar between
bACE2 and hACE2. The ability of the recent VOC and VBM to bind to both hACE2 and bACE2 with
only slight differences supports the reverse zoonosis theory. The transmission of SARS-CoV-2 from
humans to numerous animals and conducted in vitro infection experiments make it clear that the
virus can infect and be transmitted between a wide range of distantly related mammal species. For
example, case reports on cats (Felis catus) living in the same household with COVID-19 patients in
Europe, Asia, North America and South America revealed that these animals could be infected with
SARS-CoV-2, showing clinical manifestations ranging from asymptomatic to severe respiratory illness
[55,56,64,65]. The reports show that 14% of tested cats in Hong Kong were SARS-CoV-2 positive by
RT-PCR [66].

Furthermore, the seroprevalence screening performed among pets living in SARS-CoV-2-positive
households in Italy demonstrated that 3.3% of dogs and 5.8% of cats were seropositive [67]. The high
seroprevalence and SARS-CoV-2 detection rates in cats and, to some extent, in dogs indicate that these
animals can be infected with SARS-CoV-2 [68]. Several other zoo animals, like tigers, lions, cougars
and gorillas, were found to test positive for the virus. Farmed minks are highly susceptible to SARS-
CoV-2 infection, and, in some cases, they have transmitted the virus back to humans. SARS-CoV-2-
positive minks were detected in 290 fur farms in Denmark, 69 mink fur farms in the Netherlands, 13
of 40 mink farms in Sweden, 23 out of 91 mink farms in Greece, 17 fur farms in the USA, four farms
in Lithuania, two farms in Canada and one fur farm each in Italy, Latvia, Poland, France and Spain
[69,70]. As a result of the virus being able to infect multiple species and also being able to jump hosts,
there are concerns that the introduction and circulation of new virus strains in humans could result in
modifications of transmissibility or virulence and decreased treatment and vaccine efficacy.

In conclusion, our MD simulations identified that the original bat progenitor RaTG13 RBD shows
preferential binding to its host bACE2 receptor than hACE2. However, some of the recent human
variants show differential binding between bACE2 and hACE2. Lastly, the VOC RBD shows slightly
higher binding to hACE2 than the bACE2. These findings provide evidence that recent human SARS-
CoV-2 variants may re-infect bats and that the extensive species diversity of bats may also have
profound effects on SARS-CoV-2 evolution in the future. Given that the phylogenetic distance
between bats and humans is comparable to that of most domestic pets and livestock, we also suggest
that these mammals, and probably many others, could readily become host reservoirs that further
promote the evolution of persistent cross-species infectivty as well. Additionally, our method provides
a relatively fast and efficient computational MD-based approach for the functional surveillance of the
virus and the viral receptor that can potentially enhance the functional interpretation of current efforts
of genomic surveillance of emerging human viral variants of concern.

Data accessibility. Online Zenodo data repo for our bioRxiv pre-print: https://zenodo.org/record/6477772#.
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