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Abstract –  

Comparative methods in molecular evolution and structural biology rely heavily upon the site-wise 

analysis of DNA sequence and protein structure, both static forms of information.  However, it is widely 

accepted that protein function results from nanoscale non-random machine-like motions induced by 

evolutionarily conserved molecular interactions. Comparisons of molecular dynamics (MD) simulations 

conducted between homologous sites representative of different functional or mutational states can 

potentially identify local effects on binding interaction and protein evolution. Additionally, comparisons 

of different (i.e. non-homologous) sites within MD simulations could be employed to identify functional 

shifts in local time-coordinated dynamics indicative of logic-gating within proteins. However, 

comparative MD analysis is challenged by the large fraction of protein motion caused by random 

thermal noise in the surrounding solvent. Therefore, properly de-noised MD comparisons could reveal 

functional sites involving these machine-like dynamics with good accuracy. Here, we introduce 

ATOMDANCE, a user-interfaced suite of comparative machine learning based de-noising tools designed 

for identifying functional sites and the patterns of coordinated motion they can create within MD 

simulations. ATOMDANCE-maxDemon4.0 employs Gaussian kernel functions to compute site-wise 

maximum mean discrepancy (MMD) between learned features of motion, thereby assessing de-noised 

differences in the non-random motions between functional or evolutionary states (e.g. ligand bound vs. 

unbound, wild-type vs. mutant). ATOMDANCE-maxDemon4.0 also employs MMD to analyze potential 

random amino-acid replacements allowing for a site-wise test of neutral vs. non-neutral evolution on 

the divergence of dynamic function in protein homologs. Lastly, ATOMDANCE-Choreograph2.0 employs 

mixed-model ANOVA and graph network to detect regions where time synchronized shifts in dynamics 

occur. Here, we demonstrate ATOMDANCE’s utility for identifying key sites involved in dynamic 

responses during functional binding interactions involving DNA, small molecule drugs, and virus-host 

recognition, as well as understanding shifts in global and local site coordination occurring during 

allosteric activation of a pathogenic protease.  

 

Statement of Significance – ATOMDANCE is a suite of software pipelines controlled by a graphical user 

interface and designed to comprehensively simulate, calculate and compare protein motions between 

two functional or evolutionary states while controlling for random thermally-induced noise. 

ATOMDANCE is useful for finding amino acid sites on a given protein that are functionally important in 

interaction with other proteins, DNA, or other small molecules. It can also be used to assess the protein 

site-specific effects of genetic mutation that affect protein interaction. Lastly, ATOMDANCE identifies 

regions of proteins that coordinate shifts in motions in potentially complex ways as a single 

choreographed unit or community, allowing investigators to identify what sites are coordinating 

biophysical changes in proteins during changes in functionally logic-gated states.  

 

 

 

 

 



Introduction –  

The complex functioning of many protein pathway systems often relies upon allosteric protein-

ligand interactions (PLI) chained together by upstream/downstream protein-protein 

interactions (PPI).  Traditionally, protein function has been studied from a largely structural 

perspective, with logic-gating often portrayed as the result of the specificity of certain 

structural conformations in their ability to form PLI or PPI.  However, these ‘lock-key’, ‘puzzle 

piece’, or ‘induced fit’ generalizations of protein function are incapable of fully capturing the 

soft matter biophysics that are probably involved in most PLI and PPI (1–3). Much in the same 

way that a description of the state of a light switch as on/off fails to capture the functional 

details of electron behavior in the wiring underneath the wall, we argue that the description of 

allosteric activation and PPI as a binary state controlled only by binding interaction (4, 5) 

similarly fails to fully examine how both the complex coordinated motions of disordered 

regions such as linkers and loops, as well as the vibrational resonance of more ordered regions 

within proteins, are measurably altered to affect switching between the ‘tensed’ vs ‘relaxed’ 

logic states likely involved in allostery and PPI (4, 6). In these logic states, the complex protein 

dynamics both within and between binding partners must be more fully analyzed at single-site 

resolution so as to better understand underlying mechanisms and their subsequent biological 

evolution. Often proteins are described as analogous to nanoscale-sized machines (7–9), where 

non-random repetitive motions, are key characteristics of protein function. In this more 

dynamic view, the function and evolution of the protein-based regulatory pathways must 

depend heavily upon how protein structures are able to alter or shift their dynamics during 

important logic gating functions required when proteins and other biological macromolecules 

collectively assemble to form larger complexes (10, 11). 

Comparative methods of molecular analysis are well developed for protein sequences and 

structures in the disciplines of phylogenetics (12), molecular evolution (13) and structural 

biology (14), as well as the history of molecular biology and modern statistics (15).  In molecular 

evolution and comparative genomics, comparative methods are applied in a site-wise manner 

because genetic mutations tend to act independently at individual sites over time. Site-wise 

analyses of root mean square deviation (RMSD) of superimposed homologous protein chains 

are also very common in structural biology.  However, site-wise comparative methods for 

application to molecular dynamics are still only now beginning to be developed (16, 17).  

Important types of homologous site-wise comparisons derived from two different molecular 

dynamics (MD) simulations (Figure 1) might include site-wise comparisons of proteins in (A) two 

functional states (e.g. binding to drugs, toxins, nucleic acids, or other proteins),  (B) two 

different temperatures (e.g. thermostability), (C) two different evolutionary lineages (e.g. 

before and after some significant mutation events), or (D) two different epigenetic states (e.g. 

involving phosphorylation or methylation).  Being able to make site-wise determinations of 

similarities and differences in protein dynamics has significant potential application to the fields 

of computational pharmacology and vaccine development as they interface with the basic 



science of molecular evolution (18–22), with specific applications towards identifying single 

protein sites with large impacts upon the evolution of vaccine (20) or drug escape (19).    

A major challenge with functionally analyzing the dynamic trajectories of atoms in MD 

simulations is caused by the large fraction of motion in the system that is due to random 

thermal noise. This noise can obscure both harmonic and anharmonic vibrational frequencies 

(23) as well as other more complex non-random machine-like motions connected to protein 

function. This is more problematic in explicit solvent based MD approaches, which can more 

accurately replicate protein dynamics than other methods (24–26). Thermal noise in explicit 

solvent MD simulation is caused by the random collision of molecules in the solvent with the 

protein chains. Our past methods of comparative molecular dynamics analysis have relied upon 

a large amount of resampling of the atom trajectories to be able to resolve site-wise functional 

differences in dynamics caused by binding interactions and mutations (16–22). Here, we will 

present a novel and efficient machine learning-based approach to site-wise comparative MD 

analysis that is robust to the effect of thermal noise in the raw trajectory data. Because a 

machine learning algorithms cannot learn from noise, they can theoretically provide useful 

methods of detecting signal from noise (i.e. de-noising) in MD comparisons. Despite their 

promise for filtering random from non-random motion in site-wise MD comparisons, they 

remain largely unexplored for this purpose. As the distributions of atom fluctuations over short 

time scales in MD simulation is largely Gaussian, we propose that noise filtering can be 

addressed by Gaussian kernel-based approaches to machine learning. This approach also allows 

differences in learned features to mathematically lend themselves to a very useful comparative 

representation known as the maximum mean discrepancy (MMD) in the reproducing kernel 

Hilbert space (RKHS). A Gaussian process kernel also has an advantage in that it is more 

interpretable than black box methods such as support vector machine and neural networks 

when applied to many physical systems (27). This interpretability might be very important to 

future biomedical researchers when navigating a rapidly evolving policy landscape regarding 

the application of machine learning to drug discovery.  

Besides homologous site-wise comparisons of dynamics, there are also non-homologous site-

wise comparisons that can be made with MD simulations (Figure 1). This involves comparing 

the dynamics of two nearby adjacent or even more distant non-adjacent amino acid sites over 

time in order to ascertain how coordinated or ‘choreographed’ they are in their dynamic 

behavior, possibly indicating either resonance due to strong native contact or possibly even 

longer range interactions created by allosteric effects. A common traditional approach to the 

analysis of coordination of protein dynamics is via the property of resonance, observed through 

site-wise correlation or covariance matrices derived from MD trajectories. Hybrid approaches 

to resonance analysis often combine nuclear magnetic resonance (NMR) and MD simulation 

studies. Less computationally expensive methods such as normal mode analysis (NMA), often 

coarse-grained using elastic networks (28) are commonly conducted as well. These approaches 

have some limitations both practical (e.g. access to NMR equipment) and theoretical (e.g. 

NMA’s assumption that all protein motion is only harmonic (28)). Where protein allostery is 



investigated via MD simulations (29, 30), current state-of the-art methods often also apply 

graph network-based methods to covariance matrices to define optimal/suboptimal pathways 

connecting two chosen sites (31) or to define regional or network community boundaries 

inclusive of important sites that may influence each other (32). However, the covariance of MD 

trajectories between different sites on the protein are often statistically weakened, again by 

the effect of thermal noise. Covariance in trajectories can also be rather ineffective in capturing 

allosteric effects involving more complex motions of disordered regions such as loops and linker 

regions often involved in important dynamic protein function (33). Also, simple resonance 

patterns can sometimes be artifacts in MD simulations as well (34). A proper comparative 

analysis of functionally dynamic shifts involving more disordered regions of proteins will require 

identifying non-resonant but still time synchronous controlled changes in overall magnitudes of 

relative motions across non-homologous sites. Inspired by recent advances in the 

computational analysis of human dance itself (35), where more complex and shifting forms of 

coordination involve spatial patterning, tessellation, repetitive sequences, and variations on 

themes, we introduce a broader concept and statistical method of ‘choreographic’ analysis for 

studying coordinated protein dynamics. Choreographic analysis can still capture simple 

molecular resonance if performed on highly resolved time scales, but on longer time scales, it 

can also capture non-resonant allosteric regulatory influences on protein loop and linker 

dynamics as well. Choreographic analysis of MD simulations takes advantage of a mixed model 

analysis of variance (ANOVA) approach to capture coarse-grained time synchronous differences 

in atom fluctuation between sites and thus it is insensitive to shorter time-scales upon which 

thermal noise in occurs. Choreographic analysis also employs a graph network-based 

community detection algorithm to define the boundaries of regions of coordinated motions in 

the MD simulation.    

Here, we introduce the ATOMDANCE statistical machine learning post-processor for 

comparative molecular dynamics performed at individual site-wise resolution. ATOMDANCE is a 

python-based graphical interfaced software suite for machine learning both direct and de-

noised comparison, as well as choreographic analysis of functional protein dynamics. 

ATOMDANCE is the first software suite that provides researchers with a user-friendly 

computational platform for supplementing comparative sequence/structure analyses with 

important information about the functional motion and functional evolution of proteins 

undergoing complex interactions with DNA/RNA, drugs, toxins, natural ligands, or other 

proteins.  It offers three analytical pipelines for comparative analysis of MD as well as 

choreographic analysis for detecting how local regions of proteins are coordinate shifts in 

dynamics during mutation and/or functional interaction with other molecules in the cell (Figure 

1). In addition to static plots, ATOMDANCE interfaces automatically with UCSF ChimeraX to 

produce color-mapped structural images and movies as well.  

 

 



Methods – 

ATOMDANCE.py is a PyQt5 GUI designed for post-processing comparative molecular dynamics 

and delivering information about important protein site differences between the dynamics of 

proteins in two different functional states.  It also can be used to investigate potential site-wise 

evolutionary changes in protein dynamics and to investigate where sites share coordinated 

dynamics states as well.  After randomly subsampling the atom trajectory files and calculating 

amino acid site atom fluctuations using the atomicfluct functions from the cpptraj library, 

ATOMDANCE.py runs 4 types of analyses listed below. The types of typical comparisons of 

protein dynamics and the methods that can be used are summarized in Figure 1. 

(A) DROIDS 5.0 for direct site-wise comparison of protein dynamics 

This option is an acronym for Detecting Relative Outlier Impacts in Dynamics Simulations and 

calculates both the average differences and KL divergences in the atom fluctuation at every 

protein site.  Fluctuations are averaged by residue for each amino acid. Significant differences in 

dynamics of the two protein states are determined by a two sample Kolmogorov-Smirnov test 

corrected for the number of sites in the protein corrected for the false discovery rate (i.e. 

Benjamini-Hochberg method) caused by the total number of sites on the protein.  This method 

is described and published previously in DROIDS v1.0-4.0 (16, 17).  The only difference in v5.0 is 

that the subsampling is taken from random window positions along a single long MD 

production run, rather than multiple short MD production runs. The site-wise average 

differences and Kullback-Leibler (KL) divergences in atom fluctuation are reported similarly to 

the DROIDS 4.0 method previously developed by our lab group (16, 17).  Atom fluctuation is 

defined as the root mean square fluctuation (eqn 1) taken over a user defined number of image 

frames acquired in a given time interval. The MD interface software we provide generates 5000 

image frames per 1ns of MD simulation. Thus a typical 10ns comparative analysis of 50,000 

image frames might randomly resample the rmsf values for 100 randomly positioned windows 

taken along the MD trajectory, each with 200-300 frames used for each rmsf calculation, 
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where v represents the set of XYZ atom coordinates for m atoms for a given amino acid residue 

over n time points, and w represents the average coordinate structure for each MD production 

run for a given ensemble (using the ‘‘atomicfluct’’ function from cpptraj software (36). Thus, a 

signed and symmetric Kullback-Leibler (KL) divergence metric (eqns 2-3) for comparing rmsf 

values for two ensembles of size n (i.e. number of resamples) for a given amino acid is 
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𝑠𝑖𝑔𝑛𝑒𝑑 𝐾𝐿 = {𝐾𝐿;  𝑖𝑓 𝑟𝑚𝑠𝑓𝑞𝑢𝑒𝑟𝑦 > 𝑟𝑚𝑠𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ,  

                          {−𝐾𝐿;  𝑖𝑓 𝑟𝑚𝑠𝑓𝑞𝑢𝑒𝑟𝑦 < 𝑟𝑚𝑠𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒                                                                                               (3) 

Note that the sign is simply determined by the relative value of the site specific rmsf of the 

query state of the protein compared to the site specific rmsf of the reference state of the 

protein. Therefore, a positive sign indicates an amplification of motion during binding or 

mutation while a negative sign indicates a dampening of motion.  

In ATOMDANCE, we offer the same analysis in a completely python-based application as 

DROIDS 5.0. Sites with significantly different dynamics are identified with a multiple test 

corrected two sample Kolmogorov-Smirnov test. While older versions of DROIDS were 

developed as a perl plus R language pipeline that interfaced directly with licensed Amber 

software, DROIDS 5.0, like all of ATOMDANCE runs exclusively in python code, and now 

executes independently of MD simulation software.   

(B) maxDemon 4.0 for de-noised functional comparisons of protein dynamics 

The maxDemon 4.0 program in ATOMDANCE is trained on feature vectors of local atom 

fluctuations derived from the molecular dynamics trajectories of proteins in two functional 

states (e.g. bound vs. unbound or wild-type vs. mutant).  The comparison between MD 

simulations at given sites are reported as maximum mean discrepancy (MMD) in the 

reproducing kernel Hilbert space (RKHS).   Hypothesis tests for significance of functional 

dynamic changes reported via MMD are also provided using a bootstrapping approach.  A more 

detailed graphical summary of this method is shown in Supplemental Figure 1.  

This analysis option uses site-wise training of Gaussian processes machine learners with tuned 

radial basis kernel functions in order to specify a maximum mean discrepancy (MMD) in 

reproducing kernel Hilbert space (RKHS) that describes the distance in learned features 

between the two protein dynamic states at all given sites on the protein.  

Thus the kernel function (eqn 4) describing the mapping of the data points xi and xj being 

compared is  

𝑘(𝑥𝑖  , 𝑥𝑗  ) = 𝑒𝑥𝑝 (
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Note that σ is sampled derived.  And the empirical estimations of MMD, or distance between 

feature means (eqn 5) is given by  
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where x’s are the data points we have and y’s are generated examples evaluated on the kernel.  



The learners in ATOMDANCE are trained using a local atom fluctuation feature vector 

comprised of fluctuations from sites -2, -1, 0, 1, 2 positions on the protein chain relative to the 

site being analyzed.  The observed site-wise MMD values are further subjected to hypothesis 

testing using a bootstrap derived empirical p-value whereby the observed MMD values 

between the functional dynamic states at any given site are compared to 500 bootstrapped 

MMD values for that site when derived from resampling the dynamics in the same dynamic 

state. A key concept here when comparing this output to the site-wise KL divergence metrics 

generated by DROIDS 5.0 is that because the learner cannot optimize on random differences in 

atom fluctuation caused by thermal noise it acts as a noise filter, thus eliminating motion 

dampening that is not directly due to non-random differences in atom fluctuation between the 

sites being compared (i.e. functional aspects of molecular interactions directly involved in the 

binding interaction)  

(C) maxDemon 4.0 for de-noised evolutionary comparisons of protein dynamics 

For a test of neutral evolution on protein dynamics, the MMD of amino acid replacements 

observed on orthologs is compared to a neutral model of the MMD of random pairs of differing 

amino acids at different sites on the two protein simulations being compared.  This allows for 

the identification of potential sites where natural selection has either functionally conserved or 

adaptively altered the local molecular dynamics of the protein.  This analysis option is only 

appropriate when comparing two homologous proteins in two states of molecular evolution, 

whereby mutations have accrued over time and the user would like to determine whether the 

dynamics at a given site of amino acid replacement has likely been functionally conserved, 

evolved neutrally or evolved adaptively (i.e. under purifying, neutral or adaptive evolution).  

Comparisons of dynamics between the same protein in two different species (i.e. orthologs) or 

two related proteins in the same species (i.e. paralogs) are both enabled through this method 

of analysis.  In this case, the MMD in dynamics between each site of amino acid replacement 

between the homologous proteins is compared to a model of neutral evolution represented by 

a distribution of MMD taken from the dynamics of 500 random pairs of dissimilar amino acids 

at different sites on the homologous proteins. If the MMD for an observed amino acid 

replacement is in the lower or upper extremities of the distribution of neutral MMD (two-tailed 

level of significance = 0.05), then natural selection acting upon the dynamics can likely be 

inferred.     

(D) Choreograph 2.0 – classical statistical identification and comparison of dynamics that 

are coordinated across different sites on a given protein 

The ChoreoGraph 2.0 program in ATOMDANCE offers a site-wise mixed-effects model ANOVA 

and graph network community detection analysis of time synchronous differences in atom 

fluctuation between sites indicative of complex choreographed motions in protein dynamics. It 

is used for the identification of regions or communities of amino acid sites with high degree of 

coordination in the shifting of their respective dynamic states. The network communities 

detected in both functional protein states are compared using bootstrapped resampling of 



graph network connectivity and two methods of defining graph network non-randomness. 

These are the (A) probability of two sites being in the same resonance community and the (B) 

distance of the graph network from a random graph defined by the Erdos-Renyi model. This 

analysis option examines the reference and query dynamic state simulations of the proteins 

compared above and produces (A) site-wise heat maps and community level graph networks 

identifying groups of amino acid sites where atom fluctuation values are resonating over time 

in a coordinated fashion and (B) site-wise heat maps and community level graph networks 

identifying groups of amino acid sites where overall atom fluctuation values are not significantly 

different from each other (i.e. potentially in contact). In each dynamic state simulation every 

site i on the protein is compared to every site j using a mixed effects model ANOVA where atom 

fluctuation represents a fixed effect (α) in the model and a time sample represents a random 

effect (β) in the model (with µ = mean fluctuation and ε= error or residual term). Thus the 

general linear model (eqn 6) becomes 

𝑌𝑠𝑡 =  𝜇 + 𝛼𝑠 + 𝛽𝑡 + 𝛼𝛽𝑠𝑡 + 𝜀𝑠𝑡                                                                                                                                (6) 

where s represents the site class (i or j) and t represents the random time sampling group 

collected by the cpptraj program.   

For the choreographic analysis, the p-value of interaction between atom fluctuation levels 

between site i and site j and the time subsamples in the MD simulation (i.e. αβst) indicates the 

significance of an interaction of fixed differences in atom fluctuation between the two separate 

sites over time (i.e. a coordinated or choreographed physical motion). The p-values are 

corrected for false discovery rate via Benjamini Hochberg method and shown as a heat map 

representing significance of areas of synchronously shifting site dynamics on the protein. In the 

second step of the analysis, intended to define communities of coordinated regions of protein 

dynamics, the strongest interaction p-values for all site i to site j comparisons are represented 

by a graph network (eqn 7) where (kn), the degree of node n is  

𝑘𝑛 = 𝐴𝑛𝑚 ∑ 𝑛𝑚                                                                                                                                                            (7) 

where n and m are the interaction p values for sites i and j, and Anm is the adjacency matrix 

connecting nodes n and m. The user can choose to build this network using either a user-

defined fixed p-value cutoff (e.g. p < 0.003) or an autotuned cutoff that collects the 5% 

strongest interaction p-values (e.g. p=’auto’). The reader should note that here the mathematic 

term ‘adjacency’ is not defined in terms of structural proximity of sites i and j, but instead it 

defines a form of adjacency in shifts in atom fluctuation that occur at the similarly in time.  

Most importantly, while the structural proximity of two given sites i and j can facilitate 

resonances in dynamic state, our definition of adjacency can also capture synchronous changes 

of dynamic states even when the sites i and j are quite far apart within the protein.  Therefore, 

this allows us to define communities of time coordinated dynamics that can potentially involve 

both proximal and distant effects that when color mapped to the protein structure, can show 

how two distant sites can ultimately influence each other via allostery. The Louvain community 



detection algorithm (37) iterates a two-step process of modularity optimization followed by 

community aggregation until community identities of all nodes are stable.  It is implemented in 

our code by the python package networkx (38).  

ATOMDANCE is intuitive and user-friendly, providing a simple graphical user interface (GUI) 

that only requires structure, topology, and trajectory files (.pdb, .prmtop, .nc) for the two 

molecular dynamics simulations being compared (Supplemental Figure 2).  It is entirely python-

based and outside of this it only requires UCSF ChimeraX for molecular visualization and the 

popular cpptraj library for resampling calculations (36, 39, 40). ATOMDANCE is also 

supplemented with an optional GUI (Supplemental Figure 3) for generating simulations via 

open-source tools (i.e. openMM and AmberTools) (41, 42).  However it can also potentially be 

used with files generated using NAMD (qwikMD), CHARMM, or the licensed version of Amber 

(41, 43–45).  We provide an optional GUI for generating multiframe PDB file movies using UCSF 

ChimeraX (40) where the motions of the protein system are colored and augmented in 

accordance with the MMD.  Examples of these movies can be seen in an introductory video 

available at  https://people.rit.edu/gabsbi/img/videos/MMDmovie.mp4 

ATOMDANCE is available at GitHub/GitHub pages 

https://github.com/gbabbitt/ATOMDANCE-comparative-protein-dynamics 

https://gbabbitt.github.io/ATOMDANCE-comparative-protein-dynamics/ 

and as a docker container here 

https://github.com/patrynk/atomdance-docker 

Examples presented in this manuscript were generated from structure, topology, and trajectory 

files deposited here 

https://zenodo.org/record/7679282#.Y_wIK9LMJ9A  

DOI 10.5281/zenodo.7679282 

See the Supplemental Methods file for more detailed descriptions about the MD preparation 

and analyses on the specific examples presented in the Results section.  

 

Results –  

To demonstrate the utility of ATOMDANCE, we present a comparison of the unfiltered (i.e. 

noisy) site-wise divergences in atom fluctuation (Figure 2) to the denoised site-wise discrepancy 

in learned features of local atom fluctuation (Figure 3), presented in four examples of functional 

binding interactions. These four examples include (A) DNA-bound vs. unbound TATA binding 

protein (PDB: 1cdw)(46), (B) sorafenib-bound vs. unbound B-Raf kinase domain (PDB: 

1uwh)(47), (C) SARS-CoV-2 viral bound vs. unbound angiotensin-converting enzyme 2 (ACE2) 

https://people.rit.edu/gabsbi/img/videos/MMDmovie.mp4
https://github.com/gbabbitt/ATOMDANCE-comparative-protein-dynamics
https://gbabbitt.github.io/ATOMDANCE-comparative-protein-dynamics/
https://github.com/patrynk/atomdance-docker
https://zenodo.org/record/7679282#.Y_wIK9LMJ9A


protein (PDB: 6m17)(48), and (D) the allosteric activated (i.e. InsP6 bound) vs inactivated (i.e. 

unbound) Vibrio cholera toxin RTX cysteine protease domain (PDB: 3eeb)(49).  The root mean 

square fluctuation plots for these comparisons are shown in Supplemental Figure 4. 

The first example of comparative protein dynamics analyses conducted with ATOMDANCE 

investigated the functional effect of DNA binding to TATA binding protein (TBP; PDB 1cdw) by 

the site-wise comparison of atom fluctuation of TBP in both its DNA bound and unbound state.  

Figure 2A shows both color-mapped protein surface and site-wise plot of the KL divergence in 

fluctuation (i.e. DROIDS 5.0).   This protein binds quite strongly as is evidenced by a general 

dampening of fluctuation across the protein (in blue). Supplemental Figure 5 demonstrates 

alternative plots of the TBP results generated by ATOMDANCE showing site-wise atom 

fluctuation profiles and average differences in fluctuation colored by amino acid type. The 

comparison of machine learning derived MMD (i.e. maxDemon 4.0; Figure 3A) clearly captures 

the key sites of the functional interaction; two loops of the protein that interact directly with 

the major groove of the DNA (in blue) (46). Close-up views of all MMD color-mapped structures 

are given in Supplemental Figure 6 with TBP in panel A. Supplemental Figure 7 shows the TBP 

MMD plot colored by amino acid type and bootstrapped empirical p-values. To examine the 

consistency of our comparative methods and machine learning application when different types 

of MD integration and acceleration are used on the TBP structure, we compare the site-wise 

dampening of atom fluctuation measured via signed KL divergence (eqn 3; Supplemental Figure 

8) and the key binding sites identified via MMD (eqns 4 nd 5; Supplemental Figure 9) across 

four methods of MD simulation using two different softwares packages (41, 42). These include 

(A) GPU-accelerated Verlet integration with an Andersen thermostat (50) in OpenMM, (B) GPU-

accelerated Langevin integration in OpenMM, (C) GPU-accelerated particle-mesh Ewald aMD in 

Amber20 (i.e. pmemd.cuda; see (51, 52)), and (D) GPU-accelerated aMD integration in 

OpenMM (53, 54) .  While the site-wise divergence patterns do differ slightly (Supplementary 

Figure 8), the MMD correctly identifies the TBP binding site loops in all cases regardless of the 

type of integration or acceleration used (Supplementary Figure 9).    

The second example of the application of MMD captures the functional amplification of atom 

fluctuation by the activation loop (shown in red) of BRAF kinase upon the binding of the drug 

sorafenib in the ATP binding pocket of the kinase domain (PDB 1uwh; Figure 3).  In this example 

the interaction of ATP or ATP-competitive antagonists like the cancer drug sorafenib clearly 

amplify the motion in the activation loop as can be observed in both the unfiltered and de-

noised dynamics (Figure 2B and Figure 3B) (47).  While sorafenib binds the site stronger than 

ATP, thus interrupting the MAPK pathway triggering cell proliferation in tumorogenesis, this 

amplification of the activation loop by the drug may be functionally related to the 

hyperactivation of MAPK in surrounding normal cells, leading to cancer recurrence (18).  

A third example also demonstrates the utility of the DROIDS 5.0 KL divergence and maxDemon 

4.0 MMD to investigate the protein-protein interaction between the viral SARS-CoV-2 receptor 

binding domain (RBD) and its human protein target angiotensin converting enzyme (ACE2)(PDB 



6m17) (48). While the unfiltered divergence in viral-bound vs. unbound dynamics exhibits 

general dampening of ACE2 target protein’s motions (Figure 2C) the key functional sites of ACE2 

that are recognized by the viral RBD are quite clearly and dramatically revealed by the MMD 

(Figure 3C).  These include two sites on the N-terminal helices of ACE2 including two well 

documented additional sites identified at Q325 and K353 identified in previous studies of 

functional dynamics and evolution (20–22).  

In the fourth example, the DROIDS 5.0 KL divergence demonstrates a large allosteric effect of 

the eukaryotic specific InsP6 signaling molecule in triggering general amplification of dynamics 

across the whole of the Vibrio cholera RTX cysteine protease (Figure 2D), effectively activating 

the toxin only when it is present within host tissues thus preventing proteolytic destruction of 

the bacteria itself (49).  The maxDemon 4.0 MMD analysis also captures this effect and 

additionally reveals the key cysteine and other possible sites that drive this change in dynamics 

(Figure 3D). 

To demonstrate the utility of MMD in a comparative evolutionary analysis of human vs. 

bacterial TBP (Figure 4), maxDemon 4.0 derived a neutral model distribution of MMD in 

dynamics for randomly selected pairs of differing amino acid sites on the human and bacterial 

orthologs (Figure 4A) with the tails indicating non-neutral evolution colored red for functionally 

conserved dynamics and green for adaptively altered dynamics. The two TBP ortholog 

structures are nearly identical (Figure 4B), and yet (Figure 4C) two regions of altered dynamics 

(i.e. high MMD) appear related amino acid replacements that have shifted the protein dynamics 

related to the TBP central hinge and one of the two loop binding regions highlighted earlier in 

Figure 4A.   Most of the rest of the majority of the amino acid replacements (red bars) have 

occurred under the selective pressure to functionally conserve the TBP dynamics keeping the 

MMD low between the two orthologs.  

The last ATOMDANCE method demonstrates the utility of a mixed effects model ANOVA 

combined with network community detection algorithms in ChoreoGraph 2.0 for identifying 

regions with time coordinated dynamics (Figure 5, Supplemental Figure 10).  Here we analyzed 

our fourth case example above comparing the unbound and InsP6-bound dynamics of the RTX 

cysteine protease domain. We demonstrate a profound loss of regions of coordinated motions, 

most likely due to the loss of some site resonance as well as the activation of triggered loop 

regions during the transition from a tensed to a relaxed state during allosteric transition 

invoked by the InsP6 ligand. Upon allosteric activation of the protease, the dynamic shift from a 

tensed to a relaxed state mainly serves to remove most of the coordinated motions between 

amino acid sites. This was particularly exemplified by enhanced dynamics at the loop or flap 

regions at the top of the protease. This presumably would allow for more facile interactions 

with other protein substrates in the cell upon infection by the V. cholera pathogen.  We have 

recently investigated protease flap dynamics in another protease system in HIV-1 (19). In this 

allosterically activated protease, we demonstrate another potentially valuable computational 



approach to analyzing allostery and other forms of protein logic gating in metabolic and 

regulatory pathways in the cell.    

 

Discussion -  

Molecular dynamics simulation is a powerful tool for estimating physicochemical properties of 

systems in modern protein science.  However, its utility has been limited by the lack of 

statistically sound methods that allow site-wise comparative functional and evolutionary 

analyses of protein dynamics. Unlike protein sequence and structural data, both static forms of 

data, capturing protein motion via molecular dynamics simulations creates a large component 

of variation that is induced by solvent-induced random thermal noise, subsequently creating a 

dataset in which non-random functional motions of proteins are potentially obscured. We have 

described ATOMDANCE, a software suite for comparative protein dynamics that utilizes a 

powerful and interpretable kernel-based machine learning-based post-processor that allows 

users to mitigate the effects of noise and to identify functional and evolutionary differences in 

molecular dynamics at individual sites on proteins during important logic-gated functions of 

pathways involving PLI and/or PPI. In combination, the ATOMDANCE software provides users 

with a comprehensive approach to studying how dynamic PPI and PLI partners alter site-wise 

atom fluctuation when binding, what sites are most responsible for this function and/or how 

they evolved to achieve this function and how local communities of sites on the protein are 

organized or choreographed in their motion to achieve this function.   

While site-wise differences and divergence metrics can capture meaningful differences in 

protein function related to overall shifts in thermodynamics, they often have difficulty 

achieving accurate resolution for identifying the key binding sites without a large amount of 

time-consuming sampling via MD simulation to mitigate the effect of noise. The TATA binding 

protein used in our validations, is a perfect example of such a case, as it utilizes two functional 

binding recognition loops, but nevertheless binds DNA so strongly so as to even bend the rigid 

DNA molecule and dampen atom fluctuation across nearly the whole of the TATA binding 

protein.  While divergence metrics in DROIDS 5.0 capture this overall dampening at nearly all 

protein sites very well, our kernel learner in maxDemon 4.0 clearly identifies the functional 

binding sites hidden within the thermal noise (i.e. the ends of the two loops of the protein with 

amino acid side chains that intercalate with nucleotides in the DNA double helix).  

Lastly, we demonstrate that our application of mixed-effects model ANOVA to identify time 

synchronous differences in atom fluctuations as a pre-processing step prior to building a graph 

network (ChoreoGraph 2.0), can act effectively to identify dynamically choreographed regions 

of sites and to determine whether these differences in the magnitude of motion are 

significantly coordinated over time (i.e. via the interaction term in the model). As the ANOVA 

approach requires coarse-grained blocks of time to be defined, we suppose that it is likely to be 

relatively unaffected by thermal noise in the MD simulations, especially if the allosteric effects 



on dynamics are happening on a longer time scale when compared to either the thermal noise 

and/or the molecular resonance in the MD simulation. Our application of mixed-effects model 

ANOVA combined with network graph Louvain community detection (ChoreoGraph 2.0) offers 

users a simple GUI interface, that unlike WISP (31), analyzes all pair-wise combinations of sites 

at once without requiring users to select a predetermined source and sink site on the protein to 

be connected by the graph network. In our work presented here, ChoreoGraph 2.0 

demonstrates a clear role of the coordination of motions of amino acid sites via a combination 

of local resonance and loop regulation in the allosteric control and logic-gating behavior of a 

well-studied pathogenic protease (49). We also note that while our choregraphic analysis of this 

allosteric protease confirms the long hypothesized existence of ‘tensed’ and ‘relaxed’ protein 

states involved in allosteric regulation, it also represents a significant departure from past 

theory in that it demonstrates that these states are not always dependent upon interactions 

across separate protein domains that invoke conformational change (4, 5, 55); however see 

(56). As we observe here, they also occur across communities of sites with coordinated 

dynamics acting within a single domain and in a relatively short amount of MD simulation (i.e. < 

10 ns).  Despite the apparent success in our analysis validating many aspects we already know 

about this pathogenic protease, we would warn users that all of our methods require a well-

defined and realistic structure that represents the reference and query state of the protein, 

along with all the usual caveats needed when carefully applying MD simulation (e.g. sufficient 

energy minimization and equilibration, adding hydrogens, proper force fields, etc.).   

In conclusion, ATOMDANCE software offers suite of analyses useful for (A) identifying single 

sites with large effect on the function and/or evolution of PLI and PPI and (B) investigating shifts 

in protein dynamics that are affected by the logic state of these sites (i.e. bound vs. unbound). 

Here, we have demonstrated the utility of ATOMDANCE for investigating a variety of functional 

aspects of PLI including TATA-binding and BRAF kinase inhibitor drug induced shifts in dynamics, 

PPIs involved in infectious disease, as well as the functional evolutionary convergence of 

dynamic function in human-bacterial TATA-binding protein orthologs.  ATOMDANCE offers our 

traditional comparative metrics applied to molecular dynamics (DROIDS 5.0) as well as a novel 

kernel-based approach to identifying specific key sites driving either binding interactions and/or 

protein activation (maxDemon 4.0). ATOMDANCE also offers a choreographic analysis for 

characterizing regions across the protein where coordinated changes or shifts in dynamics over 

time may involve multiple sites (ChoreoGraph 2.0).  ATOMDANCE is entirely python-based with 

an easy to use graphical interface with seamless interaction with the open-source cpptraj MD 

analysis library and the modern UCSF ChimeraX molecular visualization software.   
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Figure 1 – Overview of the ATOMDANCE statistical machine learning post-processor for 

comparative protein dynamics. The three main types of site-wise comparisons of protein 

dynamics (left) and the three main methods of comparative analysis (right) are visually 

summarized. The types of protein dynamics comparisons shown here include (A) functional 

comparisons across homologous sites where the reference state and query state of the 

dynamics is measured from two molecular dynamics (MD) simulations of the unbound protein 

and its ligand bound state (resp.), (B) evolutionary/genetic comparisons across homologous 

sites where the reference and query state is measured from dynamics before and after the 

mutation, and (C) comparisons of dynamics of non-homologous sites over time collected from a 

single MD simulation. Note that functional comparisons could also include changes in 

temperature and evolutionary comparisons could also include changes in epigenetics as well. 

The methods of comparative analysis include (A) a direct comparison of atom fluctuations 

across all sites computed using divergence metrics (i.e. DROIDS 5.0), (B) a de-noised 

comparison of learned features of the local atom fluctuations across all sites computed via 

Gaussian process kernel machine learners (maxDemon 4.0), and (C) a comparison of how 



coordinated the atom fluctuations are between all pair-wise combinations of sites computed 

via a mixed-effects model analysis of variance (ChoreoGraph 2.0).  

 

 

 

Figure 2 – DROIDS 5.0 analysis of direct site-wise divergence metrics in local atom fluctuation 

when comparing molecular dynamics simulations of functionally bound vs. unbound target 

proteins.  The comparisons include (A) DNA-bound vs. unbound TATA binding protein (PDB: 

1cdw), (B) sorafenib-bound vs. unbound B-Raf kinase domain (PDB: 1uwh), (C) SARS-CoV-2 viral 

bound vs. unbound angiotensin-converting enzyme 2 (ACE2) protein (PDB: 6m17), and (D) the 

allosteric activated (i.e. InsP6 bound) vs inactivated (i.e. unbound) Vibrio cholera toxin RTX 

cysteine protease domain (PDB: 3eeb). Signed symmetric Kullback-Leibler (KL) divergence in 

atom fluctuation indicates sites where motion is dampened during binding (blue) and where 

motion is amplified (red). Note that while binding typically dampens atom fluctuation locally or 

even globally, in the case of this example of allostery (D) it actually amplifies atom fluctuation 

globally.  

 

 

 

 



 

Figure 3 – maxDemon 4.0 analysis of signed maximum mean discrepancy (MMD) learned 

features regarding local atom fluctuation when comparing molecular dynamics simulations of 

functionally bound vs. unbound target proteins.  The comparisons include (A) DNA-bound vs. 

unbound TATA binding protein (PDB: 1cdw), (B) sorafenib-bound vs. unbound B-Raf kinase 

domain (PDB: 1uwh), (C) SARS-CoV-2 viral bound vs. unbound angiotensin-converting enzyme 2 

(ACE2) protein (PDB: 6m17), and (D) the allosteric activated (i.e. InsP6 bound) vs inactivated 

(i.e. unbound) Vibrio cholera toxin RTX cysteine protease domain (PDB: 3eeb). Signed MMD in 

atom fluctuation indicates sites where motion is dampened during binding (blue) and where 

motion is amplified (red). Note that the kernel-based learning applied to local atom fluctuation 

(i.e. signed MMD) removes the overall effect of differences in thermal noise present in 

divergence metrics (Figure 2) from the functional comparison and so much better isolates the 

binding sites themselves. Close-up views of the color-mapped structures are shown in 

Supplemental Figure 6. 

 

 

 



 

Figure 4 – Site-wise unsigned maximum mean discrepancy MMD in local atom fluctuation and 

atom correlation comparing DNA-bound models of bacterial and human orthologs of TATA 

binding protein (PDB: 1qna and PDB 1cdw resp.).  As a test of neutral evolution, the MMD 

between dynamics on randomly chosen differing amino acid sites between the orthologs is 

used to generate (A) an expected distribution of MMD for the effects of random amino acid 

replacement on molecular dynamics.  The tails of the distribution are used to identify MMD 

values indicative of functionally conserved dynamics (red) or adaptively altered dynamics 

(green).  (B) The superimposition of the two structures shows that the protein has maintained 

near perfect structural similarity since the divergence of common ancestor between bacteria 

and humans despite many amino acid replacements over time. (C) The MMD profile of the 

dynamic differences between orthologs is the background (in white) with the bootstrap 

analyses of MMD for the existing amino acid replacements (in color).  Red indicates dynamic 

changes that are significantly smaller than expected under the neutral model (i.e. functionally 

conserved) while green indicates dynamic changes that are significantly larger under the 

neutral model (i.e. adaptively altered).    

 

 



 

Figure 5 – ChoreoGraph 2.0 - choreographic analysis with interaction p-value heat maps and 

network-based community detection indicating regions of coordinated protein dynamics over 

time. The heat maps of the interaction term p-values for all pair-wise comparison of sites I to 

sites j on the (A) inactivated or unbound and (B) allosteric activated (i.e. InsP6 bound) Vibrio 

cholera toxin RTX cysteine protease domain (PDB: 3eeb) are shown.  Multiple-test corrected 

interaction P- values for time synchronous differences in atom fluctuation across sites over time 

(i.e. coordinated motions) are derived from pair-wise mixed effects model ANOVAs where atom 

fluctuation is the dependent variable and sites i vs site j is the fixed effect and time samples are 

the random effect).  Patterns of coordinated motion across sites are indicated by significant p-

value (white). Regions of coordinated motion derived from Louvain community detection 

applied to graph network analysis are shown for (C) unbound and (D) InsP6-bound V. cholera 

protease. Choreographed regions (i.e. communities of sites with significant time interactions) 

are similarly color mapped to the surface of the protein. Regions that fail to form coordinated 

motions are colored light turquoise green.   Note that upon binding (D) several very large 

resonance communities/regions disappear probably allowing the protease to more easily 

interact with host protein targets than when in the inactivated state within the bacteria. 

Connectivity and non-randomness of the interaction p-value network is significantly higher in 

the inactivated state (connectivity t=-397.83, p<0.0001 | non-randomness t=-47.75, p<0.0001). 

Close-up view of the interaction heat map for the inactivated protease (C) is given in 

Supplemental Figure 10.   

 

 



Supporting Material  – video overview with dynamics of DNA-bound TATA binding protein and 

sorafenib drug-bound B-Raf kinase domain weighted in accordance with maximum mean 

discrepancy in atom fluctuation.   https://people.rit.edu/gabsbi/img/videos/MMDmovie.mp4 

 

https://people.rit.edu/gabsbi/img/videos/MMDmovie.mp4

