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Previous work on fluctuating asymmetry (FA), a measure of developmental 

instability, has highlighted its controversial relationship with environmental stress and 

genetic architecture.  I suggest that conflict may derive from the fact that the basis of FA 

is poorly understood and, as a consequence, the methodology for FA studies may be 

flawed.  While size-based measures of FA have been assumed to have half-normal 

distributions within populations, developmental modeling studies have suggested other 

plausible distributions for FA.  Support for a non-normal distribution of FA is further 

supported by empirical studies that often record leptokurtic (i.e., fat or long-tailed) 

distributions of FA as well.  In this dissertation, I investigate a series of questions 

regarding the both the basis and distribution of FA in populations.  Is FA normally 

distributed and therefore likely to be properly sampled in FA studies?  If not normal, 

what candidate model distribution best fits the distribution of FA?  Is the shape of the 

distribution of FA similar to a simple and specific growth model (geometric Brownian 
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motion)?  Does reducing individual variation in populations through inbreeding affect 

follow the prediction of this model?  How does this shape respond to environmental 

factors such as temperature when genetic variation is controlled?   

In three species of insects (cotton aphid, Aphis gossipyii Glover; honeybee, Apis 

mellifera; and long-legged fly, Chrysosoma crinitus (Dolichipodidae)), I find that FA was 

best described by a double Pareto lognormal distribution (DPLN), a lognormal 

distribution with power-law tails.  The large variance in FA under this distribution and 

the scaling in the tails both act to slow convergence to the mean, suggesting that many 

past FA studies are under-sampled when the distribution of FA is assumed to be normal.  

Because DPLN can be generated by geometric Brownian motion, it is ideal for describing 

behavior of cell populations in growing tissue.  I demonstrated through both a 

mathematical growth model and an inbreeding experiment in Drosophila simulans that 

the shape of the distribution of FA is highly dependent on the level of genetic redundancy 

or heterogeneity in a population.  In monoclonal lines of cotton aphids, I also demonstrate 

that FA decreases with temperature and that a shift in kurtosis is associated with 

temperature induced phenotypic plasticity.  This supports the prediction of a proximate 

model for the basis of FA and also suggests shape of the distribution of FA responds to 

environmentally induced changes in gene expression on the same genetic background. 
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CHAPTER 1 
SEARCHING FOR A CONSISTENT INTERPRETATION OF DEVELOPMENTAL 

INSTABILITY?  A GENERAL INTRODUCTION  

            Everywhere, nature works true to scale and everything has its proper size. 
                                                                          -- D’Arcy Thompson    
     

There have been many incarnations of the idea that stability and symmetry are 

somehow related.  Hippocrates (460-377 B.C.) was the first to postulate internal 

corrective properties that work in the presence of disease.  Waddington (1942) suggested 

existence of similar homeostatic buffering against random and presumably additive errors 

occurring during development.  The term “fluctuating asymmetry,” first introduced by 

Ludwig (1932), was later adopted by Mather (1953), Reeve (1960) and Van Valen (1962) 

to describe a measurable form of morphological noise representing a hypothetical lack of 

buffering that is always present during development of organisms.  Recently, biologists 

have become very interested both in fluctuating asymmetry’s potential usefulness as a 

universal bioindicator of environmental health (Parsons 1992) and in its potential as an 

indicator or even an overt signal of an individual’s overall genetic quality (Møller 1990).  

However, over a decade of work has left the field with no clear relationship between 

increased fluctuating asymmetry and either environmental or genetic stress (Bjorksten et 

al. 2000, Lens et al. 2002).  Despite this fact, fluctuating asymmetry is still often assumed 

to indicate of developmental instability.  Recently, Debat and David (2001) page 560 

define developmental stability as “a set of mechanisms historically selected to keep the 

phenotype constant in spite of small random developmental irregularities potentially 
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inducing slight differences among homologous parts within individuals.”  (I have 

italicized the aspects of this definition that I think are left undefined.)  

Fluctuating asymmetry is defined and measured as the average right minus left 

difference in size or shape of morphological characters in a population and has been 

generally accepted as an indicator of developmental instability because both sides of a 

bilaterally symmetric organism have been developed by the same genetic program in the 

same environment (Møller and Swaddle 1997).  Fluctuating asymmetry is measured as 

left-right side differences in the size or shape of paired bilaterally symmetric biological 

structures of organisms.  In a character trait that demonstrates fluctuating asymmetry, it is 

assumed that the distribution of signed left–right differences is near zero and that there is 

no selection for asymmetry (Palmer and Strobek 1986, 2003).  Other types of asymmetry 

do exist and are thought to indicate selection against symmetry.  Directional asymmetry 

denotes a bias towards left or right sidedness that causes the population mean to move 

away from zero.  In antisymmetry, left or right side biases occur equally at the individual 

level creating a population that is bimodal or platykurtic.  

While much attention has been directed toward the possible genetic basis of 

fluctuating asymmetry (reviewed by Leamy and Klingenberg 2005, Woolf and Markow  

2003), response of fluctuating asymmetry to stress (reviewed by Hoffman and Woods 

2003) and correlation of fluctuating asymmetry with mate choice (Møller and Swaddle 

1997); little scientific effort has been directed toward investigating its basis or origin at 

levels of organization lower than the individual.  A few theoretical explanations for the 

basis of fluctuating asymmetry have been developed (reviewed by Klingenberg  2003).  

Only two of these offer a causal explanation for the increased levels of fluctuating 
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asymmetry that are sometimes observed under periods of environmental stress.  While 

not mutually exclusive, these two explanations differ at the organizational level at which 

they are thought to act.  Møller and Pomiankowski (1993) first suggested that strong 

natural or sexual selection can remove regulatory steps controlling the symmetric 

development of certain traits (e.g., morphology used in sexual display). They suggest that 

with respect to sexually selected traits (and assuming that they are somehow costly to 

produce), individuals may vary in their ability to buffer against environmental stress in 

proportion to the size of their own energetic reserves.  These reserves are often indicative 

of the genetic quality of individuals.  Therefore, high genetic quality is expected to be 

associated with low fluctuating asymmetry.  Emlen et al. (1993) present another and 

more proximate explanation of the basis of fluctuating asymmetry.  They do not invoke 

sexual selection but hypothesize that fluctuating asymmetry is due largely to the non-

linear dynamics of signaling and supply that may occur during growth.  Here fluctuating 

asymmetry is thought to result from the scaling up of compounding temporal 

asymmetries in signaling between cells during growth.  In their model, hypothetical 

levels of signaling compounds (morphogens) and or growth precursors used in the 

construction of cells vary randomly over time.  When growth suffers less interruption, in 

other words, when it occurs faster and under less stress, there is also less complexity (and 

fractal dimension) in the dynamics of signaling and supply. This is should reduce 

fluctuating asymmetry. 

Only a few other models have since been proposed.  A model by Graham et al. 

(1993) suggests that fluctuating asymmetry in the individual can also be the net result of 

compounding time lags and chaotic behavior between hormonally controlled growth rates 
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on both sides of an axis of bilateral symmetry.  More recently Klingenberg and Nijhout 

(1999) present a model of morphogen diffusion and threshold response that includes 

genetic control of each component.  They demonstrate that fluctuating asymmetry can 

result from genetically modulated expression of variation that is entirely non-genetic in 

origin.  In other words, even without specific genes for fluctuating asymmetry, 

interaction between genetic and non-genetic sources of variation (G x E) can cause 

fluctuating asymmetry (Klingenberg 2003).    

      While all these theories for the basis of fluctuating asymmetry have proven 

useful in making some predictions about fluctuating asymmetry in relation to sexual 

selection and growth rate/trait size, none are grounded in any known molecular 

mechanisms.  The search for any single molecular mechanism that stabilizes the 

developmental process has proven elusive.  A recent candidate was the heat shock 

protein, Hsp90, which normally target conformationally plastic proteins that act as signal 

tranducers (i.e., molecular switches) in many developmental pathways (Rutherford and 

Lundquist 1998).  Because Hsp90 recognizes protein folding, it can also be diverted to 

misfolded proteins that are denatured during environmental stress.  Therefore, Hsp90 can 

potentially link the developmental process to the environment and these authors suggest it 

may also capacitate the evolution of novel morphology during times of stress by 

revealing genetic variation previously hidden to selection in non-stressful environments.  

However, additional research by Milton et al. (2003) shows that while Hsp90 does buffer 

against a wide range of morphologic changes and does mask the effect of much hidden 

genetic variation in Drosophila, it does not appear to affect average levels of fluctuating 

asymmetry through any single Hsp90 dependent pathway or process.    
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It is said that wisdom begins with the naming of things.  The case of fluctuating 

asymmetry reminds us that the act of giving names to things in science can, in fact, lend a 

false impression that we have achieved a true understanding of that which has been 

named.  While fluctuating asymmetry has had several specific descriptive definitions, we 

do not really know how to define it at a fundamental level because we do not understand 

exactly how development is destabilized under certain conditions of both gene and 

environment.  All we can say for now is that fluctuating asymmetry is a mysterious form 

of morphological variation.  Mary Jane West-Eberhard (2003) has dubbed it the “dark 

side” of variation because it may represent that noisy fraction of the physical-biological 

interface that is still free of selection, and not under direct control of the gene.  

Any study of natural variation would do well to begin by simply observing its 

shape or its distribution in full.  In nature, statistical distributions come mostly in two 

flavors: those generated by large systems of independent additive components and those 

generated by large systems of interacting multiplicative components (Vicsek 2001, 

Sornette 2003).  When large systems are composed of independent subunits, random 

processes result in the normal distribution, the cornerstone of classical statistics.  The 

normal distribution is both unique and extreme in its rapidly decaying tails, its very 

strong central tendency and its sufficient description by just two parameters, the mean 

and variance, making it, in this sense, the most parsimonious description of random 

variation.  However, the normal distribution does not describe all kinds of stochastic or 

random behavior commonly observed in the natural sciences.  When subunits comprising 

large systems interact, random processes are best described by models that underlie 

statistical physics (sometimes called Levy statistics) (Bardou et al. 2003. Sornette 2003).  
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Fat-tailed distributions are often the result of propagation of error in the presence of 

strong interaction.  These types of distributions include the power function, Pareto, Zipf 

and the double Pareto or log-Laplace distributions, all characterized by a power law and 

an independence of scale.  Collective effects in complex interacting systems are also 

often characterized by these power laws (Wilson 1979, Stanley 1995).  Examples include 

higher order phase transitions, self-organized criticality and percolation.  During second 

order phase transition at the critical temperature between physical phases, external 

perturbation of the network of microscopic interactions between molecules results in 

system reorganization at a macroscopic level far above that of interacting molecules (e.g., 

the change from water to ice).  This results in collective imitation that propagates among 

neighboring molecules over long distances.  Exactly at these critical temperatures, 

imitation between neighbors can be observed at all scales creating regions of similar 

behavior that occur at all sizes (Wilson 1979).  Thus, a self-similar power-law manifests 

itself in the interacting system’s susceptibility to perturbation and results, in this case, 

from the multiplicity of interaction paths in the interaction network (Stanley 1995).  As 

the distance between two objects in a network increases, the number of potential 

interaction pathways increases exponentially and the correlation between such paths 

decreases exponentially.  The constant continuous degree of change represented by the 

power law is the result of a combined effect between both an exponentially increasing 

and decreasing rate of change.  This highlights the fact that power laws can be easily 

manifested from combinations of exponential functions which are very common to 

patterns of change in many natural populations (both living and non-living).   
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Therefore, it is important to note that power laws in statistical distributions do not 

have to always indicate strong interaction in a system and that many other simple 

mechanisms can create them (Sornette 2003), especially where the behavior of natural 

populations are concerned.  For example, an apparently common method by which power 

laws are generated in nature is when stochastic proportional (geometric) growth is 

observed randomly in time (Reed 2001).  Power law size distributions in particle size, 

human population size, and economic factors are all potentially explained by this process 

(Reed and Jorgensen 2004).  Here we also have exponential increase in size opposing an 

exponential decrease in the probability of observation or termination that results in a 

gently decaying power law.  This process can also explain why power law scaling can 

occur through the mixing of certain distributions where locally exponentially increasing 

and decreasing distributions overlap.  For example, superimposing lognormal 

distributions results in a lognormal distribution with power law tails (Montroll and 

Shlesinger 1982,1983).   

Given that exponential relationships are so common in the natural world, we should 

assume that in observing any large natural population outside of an experiment, there is 

probably some potential for a power-law scaling effect to occur.  Therefore some degree 

of non-normal behavior may be likely to be observed, often in the underlying 

distribution’s tail.  If we assume an underlying normal distribution, and sample it 

accordingly, we are likely to under-sample this tail.  And so we rarely ever present 

ourselves with enough data to challenge our assumption of normality, and we risk 

missing the chance to observe a potentially important aspect of natural variation.     
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Until now, the basis of fluctuating asymmetry has been addressed only with very 

abstract models of hypothetical cell signaling, or at the level of selection working on the 

organism with potential mechanism remaining hypothetical.  In this dissertation, the 

underlying common theme is that fluctuating asymmetry must first and foremost be 

envisioned as a stochastic process occurring during tissue growth, or in other words, 

occurring within an exponentially expanding population of cells.  This expansion process 

can be modeled by stochastic proportional (geometric) growth that is terminated or 

observed randomly over time.  As will be explained in subsequent chapters, this 

generative process can naturally lead to variation that distributes according to a 

lognormal distribution with power laws in both tails (Reed 2001).  In chapter 2, I 

examine the distribution of fluctuating asymmetry in the wings of three species of insects 

(cotton aphid, Aphis gossipyi Glover, honeybee, Apis mellifera, and long-legged flies, 

Chrysosoma crinitus) and test various candidate models that might describe the statistical 

distribution of fluctuating asymmetry.  I then address whether, given the best candidate 

model, fluctuating asymmetry studies have been appropriately sampled.  I suggest that 

much of the current controversy over fluctuating asymmetry may be due to the fact that 

past studies have been under-sampled.  In chapter 3, I extend and test a 

phenomenological model for fluctuating asymmetry that is introduced in chapter 2.  I 

present the model and then examine some of its unique predictions concerning the effects 

of inbreeding on the shape of the distribution of fluctuating asymmetry in Drosophila.  I 

present evidence that the genetic structure of a population can have a profound effect on 

the scaling and shape of the observed distribution of fluctuating asymmetry.  In chapter 4, 

I characterize the pattern of developmental noise (fluctuating asymmetry in the absence 
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of genetic variation) in two monoclonal populations of cotton aphid cultured under 

graded environmental temperatures.  I investigate how developmental noise is altered by 

this simple change in the environment.  I present evidence that the environmental 

response of size-based FA is directly related to developmental time.  Lastly, I conclude 

with a review of my major findings in the context of the introduction I have presented 

here.  
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CHAPTER 2 
ARE FLUCTUATING ASYMMETRY STUDIES ADEQUATELY SAMPLED? 

IMPLICATIONS OF A NEW MODEL FOR SIZE DISTRIBUTION 

Introduction 

Developmental Stability: Definition, Measurement, and Current Debate 

Developmental stability is maintained by an unknown set of mechanisms that 

buffer the phenotype against small random perturbations during development (Debat and 

David 2001).  Fluctuating asymmetry (FA), the most commonly used assay of 

developmental instability, is defined either as the average deviation of multiple traits 

within a single individual (Van Valen 1962) or the deviation of a single trait within a 

population (Palmer and Strobek 1986, 2003; Parsons 1992) from perfect bilateral 

symmetry.  Ultimately, an individual’s developmental stability is the collective result of 

random noise, environmental influences, and the exact genetic architecture underlying the 

developmental processes in that individual (Klingenberg 2003; Palmer and Strobek 

1986).  Extending this to a population, developmental stability is the result of individual 

variation within each of these three components.    

Currently, there is conflict in the literature regarding the effect of both environment 

and genes on the developmental stability of populations.  The development of bilateral 

symmetry appears to be destabilized to various degrees by both environmental stressors 

(review in Møller and Swaddle 1997) and certain genetic architectures (usually created 

by inbreeding: Graham 1992; Lerner 1954; Mather 1953; Messier and Mitton 1996; 

review by Mitton and Grant 1984).  While the influence of inbreeding on FA is not 
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consistent (Radwan 2003; Carchini et al. 2001; Fowler and Whitlock 1994; Leary et al. 

1983,1984; Lens et al. 2002; Perfectti and Camachi 1999; Rao et al. 2002; Vollestad et al. 

1999), it has led biologists to use terminology such as “genetic stress” or “developmental 

stress” when describing inbred populations (Clarke et al. 1986 and 1993; Koehn and 

Bayne 1989; Palmer and Strobek 1986).   

While genetic and environmental stressors have been shown to contribute to 

developmental instability and FA, the full picture is still unclear (Bjorksten et al. 2000; 

Lens et al. 2002).  While FA has been proposed as a universal indicator of stress within 

individual organisms (Parsons 1992), its utility as a general indicator of environmental 

stress has been contentious (Bjorksten et al. 2000; Ditchkoff et al. 2001; McCoy and 

Harris 2003; Merila and Bjorklund 1995; Møller 1990; Rasmuson 2002; Thornhill and 

Møller 1998; Watson and Thornhill 1994; Whitlock 1998).  Despite many studies, no 

clear general relationship between environmental stress and FA has been demonstrated or 

replicated through experimentation across different taxa (Bjorksten et al. 2000; Lens et al. 

2002).  Furthermore, the effects of stress on FA appear to be not only species-specific but 

also trait-specific and stress-specific (Bjorksten et al. 2000).  Several meta-analyses have 

attempted to unify individual studies on the relation of sexual selection, heterozygosity, 

and trait specificity to FA (Polak et al. 2003; Thornhill and Møller 1998; Vollestad et al. 

1999); while some weak general effects have been found, their biological significance is 

still unresolved.   

Taken together, the ambiguity of the results from FA studies suggests unresolved 

problems regarding the definition and/or measurement of FA.  The distribution and 

overall variability of FA are sometimes discussed with regards to repeatability in FA 
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studies (Whitlock 1998; Palmer and Strobeck 2003), but is seldom a primary target of 

investigation.  Until we can quantify FA more reliably and understand its statistical 

properties, the potential for misinterpretation of FA is likely to persist.   

The Distribution of Fluctuating Asymmetry  

Although it is always risky to infer underlying processes from observed patterns, 

careful examination of the distribution of FA in large samples may help distinguish 

between possible scenarios driving FA.  For instance, a good fit to a single statistical 

distribution may imply that the same process operates to create FA in all individuals in a 

population.  In contrast, a good fit to a discrete mixture of several different density 

functions might suggest that highly asymmetric individuals suffer from fundamentally 

different developmental processes than their more symmetric counterparts. Thin-tailed 

distributions (e.g., normal or exponential) may indicate relative independence in the 

accumulation of small random developmental errors, whereas heavy-tailed distributions 

may implicate non-independent cascades in the propagation of such error.  Despite much 

interest in the relationship between environmental stress and levels of FA, the basic 

patterns of its distribution in populations remain largely unexplored.   

One common distributional attribute of FA, leptokurtosis, has been discussed in the 

literature.  Leptokurtosis denotes a distribution that has many small and many extreme 

values, relative to the normal distribution.  Two primary causes of this kind of departure 

from the normal distribution are the mixing of distributions and/or scaling effects in data. 

For example, the Laplace or double exponential distribution is leptokurtic (but not heavy-

tailed) and can be represented as a continuous mixture of normal distributions (Kotz et al. 

2001; Kozubowski and Podgorski 2001). Just as log scaling in the normal distribution 

results in the lognormal distribution, log scaling in the Laplace leads to log-Laplace (also 
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called double Pareto) distributions (Kozubowski and Podgorski 2002; Reed 2001), which 

are both leptokurtic and heavy-tailed (see Figure 2-1).  Several explanations for 

leptokurtosis in the distribution of FA have been proposed.  Both individual differences 

in developmental stability within a population (Gangestad and Thornhill 1999) and 

differences in FA between subpopulations (Houle 2000) have been suggested to lead to 

continuous or discrete mixtures of normal distributions with different developmental 

variances, which in turn would cause leptokurtosis (e.g., a Laplace distribution) in the 

overall distribution of FA.  Mixtures of non-normal distributions may also cause either 

leptokurtosis or platykurtosis (more intermediate values than the normal distribution: 

Palmer and Strobek 2003).  A potential example of this is illustrated by Hardersen and 

Frampton’s (2003) demonstration that a positive relationship between mortality and 

asymmetry can cause leptokurtosis.  Alternatively, Graham et al. (2003) have argued that 

developmental error should behave multiplicatively in actively growing tissues, creating 

a lognormal size distribution in most traits rather than the normal distribution that is 

usually assumed.  They argue that this ultimately results in leptokurtosis (but not fat tails) 

and size dependent expression of FA. Because simple growth models are often geometric, 

we should not be surprised if distributions of size-based FA followed the lognormal 

distribution (see Limpert et al. 2001 for a review of lognormal distributions in sciences). 

Not well recognized within biology is the fact that close interaction of many 

components can result in power-law scaling (distributional tails that decrease 

proportional to x-a rather than to some exponential function of x such as exp(-ax) 

[exponential] or exp(-ax2) [normal] and hence to heavy-tailed distributions (Sornette 

2003). Power- law scaling is often associated with the tail of the lognormal distribution, 
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especially when log standard deviation is large ( Mitzenmacher unpublished ms.; 

Montroll and Shlesinger 1982, 1983; Roman and Porto 2001; Romeo et al. 2003). 
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Figure 2-1.  Schematic representation of mathematical relationships between candidate 
models for the distribution of fluctuating asymmetry.  Mixtures here are 
continuous. 

KEY: 
Solid line – scale of variable (x ↔ ln(x)) 
Dashed line – random walk observed at constant stopping rate (i.e., negative 
exponentially distributed stop times) Note: random walk on log scale exhibits geometric 
Brownian motion  
Dotted line – convolution of two distributions (one of each type) 
Block arrow – a continuous mixture of distributions with stochastic (exponentially 
distributed) variance 
(Note – Log-Laplace is also called double Pareto by Reed 2001, Reed and Jorgensen 
2004)   
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Because FA in a population may reflect fundamental developmental differences 

between different classes or groups of individuals, for example stressed and non-stressed, 

or between different subpopulations as suggested by Houle (2000), we might expect 

discrete mixtures of different distributions to best describe FA.  For instance, extreme 

individuals falling in a heavy upper tail may be those who have exceeded some 

developmental threshold.  Major disruption of development, resulting in high FA, may 

also reveal the scaling that exists in the underlying gene regulatory network (Albert and 

Barabasi 2002; Clipsham et al. 2002; Olvai and Barabasi 2002).  Alternatively, if FA is 

produced by a single process, but to various degrees in different individuals, then one 

might expect a continuous mixture model to best describe the distribution of FA.   

The possibility of non-normal distribution of FA opens the door to several potential 

sampling problems.  For instance, if the lognormal shape, or multiplicative variance 

parameter, is large, then broad distribution effects may slow the convergence of the 

sample mean to the population mean as sample sizes are increased (Romeo et al. 2003).  

An additional, thornier, problem is caused by power-law scaling in the tails of 

distributions.  Many lognormally distributed datasets exhibit power-law scaling (or 

amplification) in the tail region (Montroll and Shlesinger 1982, 1983; Romeo et al. 2003; 

Sornette 2003), sometimes called Pareto–Levy tails or just Levy tails.  As sample sizes 

grow infinitely large, power-law and Pareto distributions may approach infinite mean (if 

the scaling exponent is less than three) and infinite variance (if the scaling exponent is 

less than two), and therefore will not obey the Law of Large Numbers (that sample means 

approach the population mean as sample sizes increase).  Increased sampling actually 

increases the likelihood of sampling a larger value in the tail of a Pareto distribution 
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(Bardou et al. 2003; Quandt 1966), creating more uncertainty in estimates of the mean as 

sample size increases.  The presence of power-law tails can slow overall convergence 

considerably even in distributions that are otherwise lognormal with low variance (which 

may not look very different from well-behaved lognormal distributions unless a large 

amount of data is accumulated). 

This discussion points to two effects that need to be assessed – broad distribution 

effects, controlled by the shape (lognormal variance) parameter of the body of the FA 

distribution, and power-law tails, controlled by the scaling exponents of the tails of the 

FA distribution.  To assess these effects, I apply a new statistical model, the double 

Pareto lognormal (DPLN) distribution (Reed and Jorgensen 2004).  The DPLN 

distribution is a lognormal distribution with power-law behavior in both tails (for values 

near zero and large positive values).  Similar to the log-Laplace distributions, the DPLN 

distribution can be represented as a continuous mixture of lognormal distributions with 

different variances. It can also be derived from a geometric Brownian motion (a 

multiplicative random walk) that is stopped or “killed” at a constant rate (i.e., the 

distribution of stop times is exponentially distributed: Reed and Jorgensen 2004; Sornette 

2003).  The parameters of the DPLN distribution include a lognormal mean (ν) and 

variance (τ2) parameter which control the location and spread of the body of the 

distribution, and power-law scaling exponents for the left (β) and right (α) tails.  Special 

cases of the DPLN include the right Pareto lognormal (RPLN) distribution, with a power-

law tail on the right but not the left side (β→∞); the left Pareto lognormal (LPLN) 

distribution, with a power-law tail only near zero (α→∞); and the lognormal distribution, 

with no power-law tails (α→∞,β→∞).  For comparison, I also fit normal and half-normal 



17 

 

distributions as well as the asymmetric Laplace distribution to the data on FA.  See 

Figure 2-1 for schematic representation of relationships between these candidate models 

for FA.  

In the following study, I directly test the fit of different distributions to large FA 

datasets from three species of insects.  I include a lab cultured monoclonal line of cotton 

aphid, Aphis gossipyii Glover, in an attempt to isolate the distribution of developmental 

noise for the first time.  I also analyze data from a semi-wild population of domestic 

honeybee, Apis mellifera, taken from a single inseminated single queen colony, and from 

a large sample of unrelated wild-trapped Long-legged flies (Chrysosoma crinitus: 

Dolichopididae).    

I address two primary groups of goals in this study.  First, I investigate what 

distributions fit FA data best and how the parameters of these distributions vary across 

species, rearing conditions, and levels of genetic relatedness.  I also address whether 

“outliers” (individuals with visible developmental errors) appear to result from discrete or 

continuous processes.  Secondly, I determine how accurate the estimates of population 

mean FA are at various sample sizes to determine whether past studies of FA been 

adequately sampled to accurately estimate mean or average FA in populations.  In 

addition to these two primary goals, I also compare the best-fitting distributions and level 

of sampling error for three of the most common methods of measuring FA: a univariate 

and a multivariate size-based metric of asymmetry, and a multivariate shape-based 

method.  

Methods 

Wings were collected and removed from three populations of insects and dry 

mounted on microscope slides.  These populations included a monoclonal population of 
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1022 Cotton Aphid (Aphis gossipyii Glover) started from a single individual collected 

from citrus in Lake Alfred, Florida, 1001 honeybees Apis mellifera, maintained at 

University of Florida and 889 long-legged flies (Chrysosoma crinitus :Dolichopodidae).  

All species identifications were made through the State of Florida Department of Plant 

Industry in Gainesville and voucher specimens remain available in their collections.   

Aphid cultures were maintained on potted plants in reach-in environmental 

chambers at 15°C with constant 14/10 hour LD cycle generated by 4 – 20 watt 

fluorescent Grolux brand bulbs.  Aphid cultures were cultured on approximately 10 day 

old cotton seedlings (Gossipium) and allowed to propagate until crowded.  Crowding 

stimulated alate formation (winged forms) in later generations which were collected 

every twenty days with a fine camel hair brush wetted in ethanol.  New plants were added 

every ten days and alates were allowed to move freely from plant to plant starting new 

clones until they were collected.  The temperature at which the colony was maintained 

created a low temperature “dark morph” Cotton Aphid which still propagated on host 

plants quickly but was larger than high temperature “light morphs” that form at 

temperatures greater than 17°C.  Dark morphs colonize stems on cotton whereas light 

morphs colonized the undersides of leaves. 

The bees were collected in June 2004 by Dr. Glenn Hall at the University of 

Florida’s Bee Lab from a single inseminated single queen colony.  They were presumably 

all foragers and haplodiploid sisters collected as they exited the hive into a collection bag.  

The bag was frozen for three hours and then the bees were placed in 85% ethanol. 

Long-legged flies were trapped from a wild population using 14 yellow plastic 

water pan traps in southwest Gainesville, Florida, during May 2003 and May-June 2004.  
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A very small amount of dishwashing detergent was added to the water to eliminate 

surface tension and enhance trapping.  Traps were checked every three hours during 

daylight and set up fresh every day of trapping.      

All insect specimens were dried in 85% ethanol, and then pairs of wings were 

dissected (in ethanol) and air-dried to the glass slides while the ethanol evaporated.  

Permount was used to attach cover slips.  This technique prevented wings from floating 

up during mounting, which might slightly distort the landmark configuration.  Dry 

mounts were digitally photographed.  All landmarks were identified as wing vein 

intersections on the digital images (six landmarks on each wing for aphids, eight for 

honeybees and Dolichopodid flies).  See Appendix A for landmark locations on wings for 

each species.    

Wing vein intersections were digitized three times each on all specimens using 

TPSDIG version 1.31 (Rohlf, 1999).  All measures of FA were taken as the average FA 

value of the three replicate measurements for each specimen.  Specimens damaged at or 

near any landmarks were discarded.  Fluctuating asymmetry was measured in three ways 

on all specimens.  First, a common univariate metric of absolute unsigned asymmetry 

was taken for two different landmarks: FA = abs(R – L) where R and L are the Euclidean 

distances between the same two landmarks on either wing.  In aphids, landmarks 1-2 and 

2-3 were used; in bees, landmarks 1-4 and 2-6 were used; and in long-legged flies, 

landmarks 3-6 and 4-5 were used.  Two multivariate geometric morphometrics using 

landmark-based methods were performed using all landmarks shown in Appendix A.  A 

multivariate size-based FA (FA 1 in Palmer and Strobek 2003) was calculated as absolute 

value of (R – L) where R and L are the centroid sizes of each wing (i.e., the average of 
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the distances of each landmark to their combined center of mass or centroid location).  In 

addition, a multivariate shape-based measure of FA known as the Procrustes distance was 

calculated as the square root of the sum of all squared Euclidean distances between each 

left and right landmark after two-dimensional Procrustes fitting of the data (Bookstein 

1991; Klingenberg and McIntyre 1998; FA 18 in Palmer and Strobeck 2003; Smith et al. 

1997).  Procrustes fitting is a three step process including a normalization for centroid 

size followed by superimposition of two sets of landmarks (right and left) and rotation 

until all distances between each landmark set is minimized.  Centroid size calculation, 

Euclidean distance calculation and Procrustes fitting were performed using Øyvind 

Hammer’s Paleontological Statistics program PAST version 0.98 (Hammer 2002).  For 

assessing measurement error (ME) of FA (or more specifically, the digitizing error), we 

conducted a Procrustes ANOVA (in Microsoft Excel) on all pairs of wing images 

resampled three times each for every species (Klingenberg and McIntyre 1998).  Percent 

measurement error was computed as (ME/average FA) x 100 where 

3/)313221( FAFAFAFAFAFAME −+−+−= .  All subsequent statistical analyses 

were performed using SPSS Base 8.0 statistical software (SPSS Inc.).  

The fits of all measures of FA to eight distributional models (normal, half-normal, 

lognormal, asymmetric Laplace, double Pareto lognormal (DPLN), two limiting forms of 

DPLN, the right Pareto lognormal (RPLN) and the left Pareto lognormal (LPLN) and a 

discrete mixture of lognormal and Pareto) were compared by calculating negative log 

likelihoods and Likelihood Ratio Test (LRT) if models were nested and Akaike 

Information Criteria (AIC) if not nested (Burnham and Anderson 1998; Hilborn and 

Mangel 1998).  Both of these approaches penalize more complex models (those with 
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more parameters) when selecting the best-fit distributional model for a given dataset.  

(The Likelihood Ratio Test does not technically apply when the nesting parameter is at 

the boundary of its allowed region, e.g., when α→∞ for the DPLN, but Pinheiro and 

Bates (2000) suggest that the LRT is conservative, favoring simpler models, under these 

conditions.)  Best fitting parameters were obtained by maximizing the log-likelihood 

function for each model (Appendix B).  The maximization was performed using the 

conjugate gradient method within unconstrained solve blocks in the program MathCad by 

MathSoft Engineering and Education Inc (2001), and was also confirmed using Nelder-

Mead simplex algorithm or quasi-Newton methods in R version 2.0.1 (2003), a 

programming environment for data analysis and graphics.   

Phenodeviants were defined as individuals demonstrating missing wing veins, extra 

wing veins or partial wing veins on either one or both wings.  All phenodeviants in 

honeybees involved absence of the vein at landmark 6 (LM 6).  Phenodeviants in aphids 

were more variable but mostly involved absence of wing vein intersections at LM 2 or 

LM 3.  Procrustes distances were estimated for phenodeviants by omitting the missing 

landmarks (caused by the phenodeviance) and controlling for the effect of this removal 

on the sums of squares.  I added an average of the remaining sums of squares in place of 

the missing sums of squares so that the calculated Procrustes distance is comparable to 

normal specimens (i.e., six landmarks).  In almost all phenodeviants, this involved 

omission of only one set of landmark values.  The frequency of phenodeviants was 

examined across the range of the FA distribution (i.e., Procrustes distance), and mean 

values of the FA for phenodeviants were compared to normal individuals in order to 
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assess whether phenodeviants tended to show higher than normal levels of FA in 

characters that were not affected by the missing, partial, or extra wing veins.  

The best fitting parameters of the best fitting models were used to build a 

distributional model under which repeated sampling was simulated at various sample 

sizes.  Average error in estimation of the mean FA was calculated as a coefficient of 

variation ( 100)/( ∗xs ) for 1,000 randomly generated datasets.  Lastly, comparison were 

made of the estimation errors given the best fitting distributions of FA to a distribution of 

sample sizes from 229 FA studies published in three recent meta-analyses (Polak et al. 

2003; Thornhill and Møller 1998; Vollestad et al. 1999).  

Results 

In the distributions of shape-based FA in monoclonal cotton aphids (n = 1022), 

domesticated honeybees (n = 1001), and wild trapped long-legged flies (n = 889), AIC 

and LRTs always favored DPLN or RPLN models by a large margin.  All size-based FA 

distributions favored DPLN or LPLN by a large margin (Table 2-1).  All variants of 

discrete mixture models we tried had very poor results (data not shown).  Figures 2-2 

through 2-4 demonstrate best fitting models for multivariate shape FA (DPLN and 

lognormal), multivariate centroid size FA (DPLN and half-normal), and univariate size 

FA (DPLN and half-normal) for all three species.  FA was often visually noticeable in 

aphids, where the mean shape FA (Procrustes distance) was three times higher (0.062 ± 

0.00050) than in bees (0.023 ± 0.00026) or flies (0.019 ± 0.00028).  I note that 

distribution of size FA in aphids and bees fit half-normal distribution in the upper tails 

fairly well but fit relatively poorly among individuals with low FA.  Long-legged flies 

exhibit poor fit to half-normal in both tails.   
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Table 2-1. Maximized log-likelihood (MLL), number of model parameters (P) and 
Akaike Information Criterion differences (∆AIC) for distributional models 
tested.  Winning models have ∆AIC zero.  Models with goodness-of-fit nearly 
equal to winners are underscored (∆AIC <3.0). 4.0 <∆AIC <7.0 indicates 
some support for specified model. ∆AIC >10.0 indicates no support (Burnham 
and Anderson 1998). Distances between landmarks for first univariate size 
FA, aphids LM 1-2, bees LM 1-4 and long-legged fly LM 3-6 and for second 
univariate FA aphids LM 2-3, bees LM 2-6 and long-legged fly LM 4-5.  

 
Species/model  Multivariate shape FA Multivariate size FA First univariate size FA Second univariate size FA 

Cotton Aphid P MLL ∆ AIC MLL ∆ AIC MLL ∆ AIC MLL ∆ AIC 
DPLN 4 255.117 0.000 542.906 1.236 545.725 2.815 614.123 2.333 

RPLN 3 264.72 17.207 547.44 8.303 549.789 8.944 617.498 7.083 

LPLN 3 256.723 1.213 543.288 0.000 545.317 0.000 613.957 0.000 

LNORM 2 734.726 955.218 1261 1433 1265 1438 1413 1596 

NORM 2 2241 3968 2847 4606 3352 5612 3534 5838 

HNORM 1 3523 6530 2370 3650 2893 4691 3047 4862 

LAPLACE 3 637.044 761.855 1638 2189 1883 2676 1950 2671 

Honey Bee          
DPLN 4 132.908 7.369 536.278 2.744 454.337 0.000 515.93 6.329 

RPLN 3 130.224 0.000 549.641 27.47 460.51 10.346 525.675 23.82 

LPLN 3 136.361 12.275 535.906 0.000 455.483 0.292 513.765 0.000 

LNORM 2 523.667 784.888 1262 1451 1081 1249 1211 1393 

NORM 2 3371 6480 2180 3286 1709 2505 2302 3574 

HNORM 1 5319 10370 1775 2475 2687 1771 1924 2816 

LAPLACE 3 1148 2036 1387 1703 1162 1413 1445 1863 

Long-legged Fly         
DPLN 4 146.603 37.971 452.728 0.000 453.958 0.000 412.007 0.000 

RPLN 3 128.617 0.000 454.056 0.656 460.261 10.606 422.993 20.182 

LPLN 3 149.585 41.935 455.818 4.18 456.237 2.559 412.902 0.212 

LNORM 2 506.553 753.871 1055 1201 1064 1216 985.894 1144 

NORM 2 2985 5710 1760 2610 1806 2701 1668 2508 

HNORM 1 5147 10030 1084 1256 1252 1590 1099 1368 

LAPLACE 3 1041 1825 940.241 973.02 1016 1121 997.28 1169 

 

For multivariate shape analysis, right tail power-law exponents (α) were very high 

(thousands), left-tail exponents (β) from 3.9-9.9, while the dispersion parameter (τ) was 

narrowly distributed from 0.310 to 0.356. Thus, shape FA exhibited little scaling in tails 

(i.e., nearly lognormal).  For size-based FA, dispersion was much larger (0.57-0.74), and 

power-law exponents more variable for univariate and multivariate size-based FA (left 
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tail (β) and right tail (α) were generally low, indicating moderate power-law scaling in 

both tails) as shown in Table 2-2. 

Table 2-2.  Best fit parameters for models in Table 1.  Parameters for univariate size FA 
are very similar to multivariate size FA and are not shown. Skew indexes for 
asymmetric Laplace are also not shown. 

 
 Multivariate shape FA Multivariate size FA 

Cotton 
Aphid 

Location Dispersion/
Shape 

Right tail Left 
Tail 

Location Dispersion/ 
Shape 

Right tail Left 
Tail 

DPLN -2.62 0.356 1160 4.04 1.45 0.735 6.24 3.01 
RPLN -3.01 0.415 7.03 ∞ 1.07 0.800 4.58 ∞ 
LPLN -2.62 0.353 ∞ 3.90 1.73 0.699 ∞ 2.23 

LNORM -2.87 0.434 - - 1.28 0.824 - - 
NORM 0.062 0.027 - - 4.92 3.94 - - 

HNORM 0.009 0.059 - - 0.163 6.31 - - 
LAPLACE 0.049 0.058 - - 0.657 2.19 - - 
Honey Bee        

DPLN -3.74 0.310 8380 9.80 1.32 0.565 10.4 1.57 
RPLN -4.02 0.274 5.52 ∞ 0.571 0.829 4.82 ∞ 
LPLN    -3.71 0.305 ∞ 7.75 1.52 0.510 ∞ 1.35 

LNORM -3.84 0.327 - - 0.777 0.850 - - 
NORM 0.023 0.008 - - 2.95 2.14 - - 

HNORM 0.007 0.018 - - 0.078 3.64 - - 
LAPLACE 0.021 0.018 - - 0.550 2.24 - - 
Long-legged Fly        

DPLN -3.93 0.346 4940 10.3
2 

-0.067 0.683 3.09 5.14 

RPLN -4.28 0.231 3.73 ∞ -0.302 0.698 2.75 ∞ 
LPLN -3.92 0.341 ∞ 9.91

2 
0.319 0.743 ∞ 3.85 

LNORM -4.02 0.351 - - 0.060 0.783 - - 
NORM 0.019 0.008 - - 2.00 2.24 - - 

HNORM 0.007 0.015 - - 0.075 2.11 - - 
LAPLACE 0.017 0.017 - - 0.346 1.06 - - 

 

Figure 2-5 shows the distribution of FA sample sizes from 229 studies published in 

three recent meta-analyses (Polak et al. 2003; Thornhill and Møller 1998; Vollestad et al. 

1999).   
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Figure 2-2.  Distribution of multivariate shape FA of A) cotton aphid (Aphis gossipyii) B) 

domestic honeybee (Apis mellifera) and C) long-legged fly (Chrysosoma 
crinitus). Best fitting lognormal (dashed line, lower inset), and double Pareto 
lognormal (solid line, upper inset) are indicated.   
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Figure 2-3.  Distribution of multivariate centroid size FA of A) cotton aphid (Aphis 
gossipyii) B) domestic honeybee (Apis mellifera) and C) long-legged fly 
(Chrysosoma crinitus). Best fitting half-normal (dashed line, lower inset) and 
double Pareto lognormal distribution (solid line, upper inset) are indicated. 
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Figure 2-4.  Distribution of univariate unsigned size FA of A) cotton aphid (Aphis 
gossipyii) B) domestic honeybee (Apis mellifera) and C) long-legged fly 
(Chrysosoma crinitus).  Best fitting half-normal (dashed line, lower inset) and 
double Pareto lognormal distribution (solid line, upper inset) are indicated.  
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Figure 2-5.  Distribution of sample sizes (n) from 229 fluctuating asymmetry studies 

reported in three recent meta-analyses (Vollestad et al. 1999, Thornhill and 
Møller 1998 and Polak et al. 2003). Only five studies had sample sizes greater 
than 500 (not shown).  

Nearly 70% of the 229 FA studies have sample or treatment sizes less than 100. 

Figure 2-6 demonstrates the hypothetical error levels (coefficients of variations) in 

estimated mean FA at various sample sizes.  Approximate best fit parameters were used 

to estimate the coefficient of variation (CV) under the DPLN distribution (for shape FA, 

ν = -3.7, τ = 0.35, α = 1000, β = 9; for size FA, ν = 1.2, τ = 0.70, α = 4.0, β = 4.0).   For 

the same set of landmarks, multivariate shape FA measures lead to the least amount of 

error in estimating mean FA under DPLN at any sample size.  Both univariate and 

multivariate size FA perform more poorly in terms of both convergence and overall 

percentage error.   

I found that while phenodeviants occurred in almost all regions of the distribution 

range of FA, the percentage of phenodeviant individuals increased dramatically with 
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increasing FA (Figure 2-7; aphids, r = 0.625 p = 0.013 ; bees, r = 0.843 p = 0.001).  I also 

found that individuals with phenodeviant wings (both aphids and bees) showed 

significantly higher levels of FA across those wing landmarks unaffected by the 

phenodeviant traits (p < 0.002 in both aphids and bees).  Only a single case of 

phenodeviance was sampled in long-legged flies. 
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Figure 2-6.  Relationship between sample size and % error for estimates of mean FA 

drawn from best fitting size (dashed line) and shape (solid line) distributions 
using 1000 draws per sample size.  All runs use typical winning double Pareto 
lognormal parameters (shape FA ν = -3.7, τ = 0.2, α = 1000, β = 9; for size FA 
ν = 1.2, τ = 0.7, α = 4.0, β = 4.0).  

Percent measurement error for shape FA was 1.41% in aphids, 1.63% in bees, and 

2.42 % in flies while for size FA, it was ~4.5% in aphids, ~5% in bees, and ~6.5 % in 

flies.  In a Procrustes ANOVA (Klingenberg and McIntyre 1998) the mean squares for 

the interaction term of the ANOVA (MSInteraction) was highly significant p<0.001 in all 

three species indicating that FA variation was significantly larger than variation in 

measurement error (ME).  The distribution of signed ME was normal and exhibited 
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moderate platykurtosis for all types of FA in all species examined.  Measurement error 

was very weakly correlated to FA in all samples (0.01 < r2 <0.07). 
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Figure 2-7.  The proportion and percentage (inset) of individuals with visible 
developmental errors on wings (phenodeviants) are shown for cotton aphids 
(A) and honeybees (B) in relation to distribution of shape FA (Procrustes 
distance).  Average FA for both normal and phenodeviant aphids (C) and 
honeybees (D) are also given.     

Discussion 

The Distribution of FA 

The data demonstrate a common pattern of distribution in the FA in wing size and 

shape of three different species whose populations existed under very different 

environmental conditions (lab culture, free-living domesticated, and wild) and genetic 

structure (monoclonal, haplodiploid sisters, and unrelated).  The similarities across the 

very different species and rearing conditions used in this study suggest that the 



31 

 

distribution of size and shape FA may have universal parameters (e.g., τ ≈ 0.35 for shape 

FA and τ ≈ 0.7 for size based FA).  The data confirm that although size FA sometimes 

exhibits reasonable fit to half-normal in the upper tail, and shape FA is reasonably well fit 

by lognormal distributions, large datasets of FA in both size and shape are always best 

described by a double Pareto lognormal distribution (DPLN) or one of its limiting forms, 

LPLN and RPLN.  Multivariate shape FA demonstrates narrow distribution with a large 

right tail, including the top few percent of the most extremely asymmetric individuals, 

that is best fit by DPLN or RPLN.  Both univariate and multivariate size FA exhibit a 

considerably broader distribution with moderate leptokurtosis that is best fit by DPLN or 

LPLN.  The data suggest that the DPLN distribution and its limiting forms are generally 

the most appropriate models for the distribution of FA regardless of method of 

measurement.   

Evidence that distribution of FA closely follows DPLN, a continuous mixture 

model, and appearance of phenodeviance across nearly the entire range of data suggested 

that developmental errors may be caused by a similar process across the entire 

distribution of FA in a population.  In other words, variation in FA may have a single 

cause in most of the data.  Although phenodeviance is significantly related to increased 

levels of FA and is more prevalent in the right tail region of the shape FA distribution, it 

does not appear associated exclusively with the right tail, as a threshold model for high 

FA might predict.  The very poor fits to all variations on the discrete mixture model also 

suggest a lack of distinct processes creating extreme FA in the three datasets.  However, I 

caution that use of maximum likelihood methods to fit data to discrete mixtures is often 

technically challenging.  I found no block effects (e.g., no differences in FA levels 
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between long-legged fly samples collected on different weeks or aphid samples collected 

from different pots or growth chambers), so it appears there is no obvious sample 

heterogeneity that could result in a discrete mixture.  With the usual caveats about 

inferring process from pattern, I do not find obvious thresholds in the distribution of 

asymmetries at the population level that would suggest threshold effects at a genetic or 

molecular level.  Lastly, based on the appearance of only one phenodeviant among our 

wild trapped long-legged fly population (as opposed to many in the bee and lab reared 

aphid populations), I speculate that mortality related to phenodeviance (and perhaps high 

FA) in wing morphology may be relaxed in lab culture and domestication.  But this could 

be confounded by other differences between the three datasets including genetic 

redundancy and species differences.  Further comparisons among populations of single 

species under different conditions would be needed to test this idea. 

Sample Size and the Estimation of Mean FA 

In random sampling under DPLN, we found that broad distribution effects due to 

the shape parameter were minimal in their effect of slowing convergence to the 

population mean in multivariate shape-based FA (τ ≈ 0.35 for all three datasets).  

However, these effects are considerable for univariate and multivariate size-based FA 

(where τ ≈ 0.70).  The effects of scaling in the tails of the distribution, which cause 

divergence from the mean, appear to have little effect in the right tail of the distribution 

of shape-based FA.  However, larger effects in the tails of the size FA create more 

individuals with very low and very high asymmetry than expected under the assumption 

of normality.  The point estimates of the scaling exponents for size FA are close to the 

range where very extreme values may be sampled under the distribution tails (if α < 3 or 

β <3), greatly affecting confidence in the estimate of mean FA.  With a sample size of 50 
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and the best fitting DPLN parameters typical for asymmetry in multivariate shape, we 

found that the coefficient of variation for mean FA is about 5%, whereas size-based mean 

FA fluctuates about 13% from sample to sample.  At a sample size of 100, these 

coefficients of variation are 3.2% and 7.5% respectively.  Unless experimental treatment 

effects in most FA studies are larger than this, which is unlikely in studies using size-

based measures of FA of more canalized traits, statistical power and repeatability will be 

low.  Given the sample size range of most previous studies (n = 30-100) and their 

tendency to favor size-based measurement methods, our results suggest that many past 

FA studies may be under-sampled.  Furthermore, it is also likely that given the small 

sample sizes in many FA studies, particularly involving vertebrates where n < 50, the tail 

regions of natural FA distributions are often severely under sampled and sometimes 

truncated by the removal of outliers.  These factors may artificially cause non-normal 

distributions to appear normal, also potentially resulting in inaccurate estimation of mean 

FA. 

The Basis of Fluctuating Asymmetry         

The surprisingly good fit of FA distributions to the DPLN model in our study 

suggests that the physical basis of FA may be created by the combination of random 

effects in geometrically expanding populations of cells on either side of the axis of 

symmetry (i.e., geometric Brownian motion).  Studies in the Drosophila wing indicate 

that cell lines generally compete to fill a prescribed space during development with more 

rapidly dividing lines out-competing weaker ones (Day and Lawrence 2000).  Because 

regulation of the growth of such cell populations involves either nutrients and/or 

signaling substances that stop the cell cycle when exhausted, it is likely that the 

distribution of numbers of cells present at the completion of growth follows an 
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exponential distribution.  Reed and Jorgensen (2004) demonstrate that when a population 

of repeated geometric random walks is “killed” at such a constant rate, the DPLN 

distribution is the natural result. There are many other examples of growth processes in 

econometrics and physics where random proportional change combined with random 

stopping/observation create size distributions of the kind described here (Reed 2001; 

Kozubowski and Podgorski 2002).  In the future, when applying this model to instability 

during biological growth, it would be very interesting to investigate how genetic and 

environmental stress might affect the parameters of this model.  If scaling effects are 

found to vary with stress, then leptokurtosis may potentially be a better candidate signal 

of developmental instability than increased mean FA.      

Conclusion 

Although size-based FA distributions can sometimes appear to fit normal 

distributions reasonably well as previous definitions of FA suppose, I demonstrate that 

three large empirical datasets all support a new statistical model for the distribution of FA 

(the double Pareto lognormal distribution), which potentially exhibits power-law scaling 

in the tail regions and leading to uncertain estimation of true population mean at sample 

sizes reported by most FA studies.  The assumption of normality fails every time 

candidate models are compared on large datasets.  Failure of this assumption in many 

datasets may have been a major source of discontinuity in results of past FA studies.  

Future work should attempt to collect larger sample/treatment sizes (n ≈ 500) unless the 

magnitude of treatment effects on FA (and thus the statistical power of comparisons) is 

very large.  Our results demonstrate that multivariate shape-based methods (Klingenberg 

and McIntyre 1998) result in more repeatable estimates of mean FA than either 

multivariate or univariate size-based methods.  I would also recommend that 
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methodology be re-examined even in large sample studies of FA.  For example, because 

Drosophila are usually reared in many replicates of small tubes with less than 50 larvae 

per tube, many large studies may still be compromised by individual sizes of replicate 

samples.  I also suggest that authors of past meta-analyses and reviews of FA literature 

reassess their conclusions after excluding studies in which under-sampling is found to be 

problematic.  Careful attention to distributional and sampling issues in FA studies has the 

potential both to mitigate problems with repeatability and possibly to suggest some of the 

underlying mechanisms driving variation in FA among individuals, populations, and 

species. 
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CHAPTER 3 
INBREEDING REDUCES POWER-LAW SCALING IN THE DISTRIBUTION OF 

FLUCTUATING ASYMMETRY: AN EXPLANATION OF THE BASIS OF 
DEVELOPMENTAL INSTABILITY 

Introduction 

 Fluctuating asymmetry (FA) is the average difference in size or shape of paired or 

bilaterally symmetric morphological trait sampled across a population.  The study of FA, 

thought to be a measure of developmental instability, has a controversial history.  

Fluctuating asymmetry is hypothesized by some to universally represent a population’s 

response to environmental and/or genetic stress (Parsons 1992, Clarke 1993, Graham 

1992).  It is also generally accepted that FA may be co-opted as an indicator or even a 

signal of individual genetic buffering capacity to environmental stress (Moller 1990, 

Moller and Pomiankowski 1993).  Recent literature reviews reveal that these conclusions 

are perhaps premature and analyses of individual studies often demonstrate conflicting 

results (Lens 2002, Bjorksten 2000).  Babbitt et al. (2006) demonstrate that this conflict 

may be caused by under-sampling due to a false assumption that FA always exhibits a 

normal distribution.  Also, FA may be responding to experimental treatment in a complex 

and as yet unpredictable fashion.  Until the basis of FA is better understood, general 

interpretation of FA studies remains difficult.   

What is the Basis of FA? 

 Earlier studies of sexual selection and FA conclude that FA is ultimately a result 

of strong selection against the regulation of the development of a particular morphology 

(e.g., morphology used in sexual display).  Thus in some instances FA may increase and 
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therefore become a better signal and/or more honest indicator of good genes.  Sexually 

selected traits tend to have increased FA (Moller and Swaddle 1997), however the exact 

mechanism by which FA increases remains unexplained (i.e., a black box).  More 

recently, theoretical attempts have been made to explain how FA may be generated but 

none have been explicitly tested.  Models for the phenomenological basis of FA fall into 

two general categories: reaction-diffusion models and diffusion-threshold models 

(reviewed in Klingenberg 2003).  The former class of models involves the chaotic and 

nonlinear dynamics in the regulation or negative feedback among neighboring cells 

(Emlen et al. 1993) or adjacent bilateral morphology (Graham et al. 1993).  The latter 

class of models combines morphogen diffusion and a threshold response, the parameters 

of which are controlled by hypothetical genes and a small amount of random 

developmental noise (Klingenberg and Nijhout 1999).  The result of this latter class of 

model is that different genotypes respond differently to the same amount of noise, 

providing an explanation for genetic variation in FA response to the same environments.  

 Traditionally, models for the basis of FA assume that variation in FA arises from 

independent stochastic events that influence the regulation of growth through negative 

feedback rather than processes that may fuel or promote growth.  None of these models 

explicitly or mathematically address the effect of stochastic behavior in cell cycling on 

the exponential growth curve.  More recently Graham et al. (2003) makes a compelling 

argument that fluctuating asymmetry often results from multiplicative errors during 

growth.  This is consistent with one particular detail about how cells behave during 

growth.  For several decades there has been evidence that during development, cells 

actually compete to fill prescribed space until limiting nutrients or growth signals are 
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depleted (Diaz and Moreno 2005, Day and Lawrence 2000).  Cell populations effectively 

double each generation until signaled or forced to stop.  It has also been observed that in 

Drosophila wing disc development, that synchrony in cell cycling does not occur across 

large tissue fields but rather extends only to an average cluster of 4-8 neighboring cells 

regardless of the size and stage of development of the imaginal disc (Milan et al. 1995).  

The assumption of previous models, particularly the reaction-diffusion type, that cell 

populations are collectively controlling their cell cycling rates across a whole 

developmental compartment is probably unrealistic.  Regulatory control of fluctuating 

asymmetry almost certainly does occur, but probably at a higher level involving multiple 

developmental compartments where competing cells are prevented from crossing 

boundaries.  However, given that individual cells are behaving more or less 

autonomously during growth within a single developmental compartment, I suggest that 

variation in fluctuating asymmetry can be easily generated at this level by a process 

related to stochastic exponential expansion and its termination in addition to regulatory 

interactions that probably act at higher levels in the organism.  In this paper, I explore and 

test simple model predictions regarding the generation of fluctuating asymmetry though 

multiplicative error without regulatory feedback. 

Exponential Growth and Non-Normal Distribution of FA  

In previous work, Babbitt et al. (2006) demonstrate that the distribution of unsigned 

FA best fits a lognormal distribution with scaled or power-law tails (double Pareto 

lognormal distribution or DPLN).  This distribution can be generated by random 

proportional (exponential) growth (or geometric Brownian motion) that is stopped or 

observed randomly according to a negative exponential probability (Reed and Jorgensen 

2004).  I suggest that this source of power-law scaling in the tails of the FA distribution is 
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also the cause of leptokurtosis that is often observed empirically in the distribution of FA.  

Kurtosis is the value of the standardized fourth central moment.  Like the other moments, 

(location, scale, and skewness), kurtosis is best viewed as a concept that can be 

formalized in multiple ways (Mosteller and Tukey 1977).  Leptokurtosis is best 

visualized as the location and scale-free movement of probability mass from the 

shoulders of a symmetric distribution towards both its center and tail (Balanda and 

MacGillivray 1988).  Both the Pareto and power-function distributions have shapes 

characterized by the power-law and a large tail and therefore exhibit a lack of 

characteristic scale.  Both because kurtosis is strongly affected by tail behavior, and 

because leptokurtosis involves a diminishing of characteristic scale in the shape of a 

distribution, the concepts of scaling and kurtosis in real data can be, but are not 

necessarily always, inter-related.        

Both in the past and very recently, leptokurtosis in the distribution of FA has been 

attributed to a mixture of normal FA distributions caused by a mixing of individuals, all 

with different genetically-based developmental buffering capacity, or in other words, 

different propensity for expressing FA (Gangestad and Thornhill 1999, Palmer and 

Strobek 2003, Van Dongen et al. 2005).  Although not noted by these authors, continuous 

mixtures of normal distributions generate the Laplace distribution (Kotz et al. 2001, 

Kozubowski and Podgorski 2001) and can be distinguished from other potential 

candidate distributions by using appropriate model selection techniques, such as the 

Akaike Information Criterion technique (Burnham and Anderson 1998). Graham et al. 

(2003) rejects the typical explanation of leptokurtosis through the mixing of normal 

distributions by noting that differences in random lognormal variable can generate 
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leptokurtosis.  Babbitt et al. (2006) also reject the explanation that leptokurtosis in the 

distribution of FA is caused by a mixture of normal distributions because the double 

Pareto-lognormal distribution, not the Laplace distribution, always appears the better fit 

to large samples of FA.  Therefore, leptokurtosis, often observed in the distribution of 

FA, may not be due to a mixing process, but instead may be an artifact of scaling in the 

distribution tail, which provides evidence of geometric Brownian motion during 

exponential expansion of populations of cells.    

Testing a Model for the Basis of FA 

I propose that the proximate basis for variation of FA in a population of organisms 

is due to the random termination of stochastic geometric growth.  The combination of 

opposing stochastic exponential functions results in the slow power-law decay that 

describes the shape of the distribution’s tail.  In this paper, I present a model for FA and 

through simulation, test the prediction that genetic variation in the ability to precisely 

terminate growth will lead to increased kurtosis and decreased scaling exponent in the 

upper tail of the distribution.  Then, I assess the validity of this model by direct 

comparison to the distribution of FA within large samples of wild and inbred populations 

of Drosophila.  Under the assumption that a less heterozygous population will have less 

variance in the termination of growth, I would predict that inbreeding should act to 

reduce power-law scaling effects in the distribution of FA in a population.  Inbreeding 

should also reduce the tail weight (kurtosis) and mean FA assuming inbred individuals 

have lower variance in the times at which they terminate growth.  I also assume that 

inbreeding within specific lines does not act to amplify FA due to inbreeding depression.  

It has been demonstrated that Drosophila melanogaster do not increase mean FA in 

response to inbreeding (Fowler and Whitlock 1994) and it is suggested that large 
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panmictic populations typical of Drosophila melanogaster may not harbor as many 

hidden deleterious recessive mutations as other species (Houle 1989), making them 

resistant to much of the typical genetic stress of inbreeding.  Therefore, the absence of 

specific gene effects during inbreeding suggests that Drosophila may be a good model 

for investigating the validity of our model as an explanation of the natural variation 

occurring in population level FA.   

Methods 

Model Development 

Simulation of geometric Brownian motion 

Ordinary Brownian motion is most easily simulated by summing independent 

Gaussian distributed random numbers or white noise ( iX ).  See Figure 3-1.   

(3.1)                                     ∑
=

=
n

i
iXXW

1
)(   

which simulated in discrete steps is  

(3.2)                                 11 −− += ttt WNN   

where N = cell population size, t = time step and W = a random Gaussian variable. 

Exponential or geometric Brownian motion, a random walk on a natural log scale, can be 

similarly simulated.  Geometric Brownian motion is described by the stochastic 

differential equation    

(3.3)                            )()()()( tdWtYdttYtdY υµ +=  

or also as  

(3.4)                                 )(
)(
)( tdWdt

tY
tdY υµ +=  
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Figure 3-1.  Ordinary Brownian motion (lower panel) in N simulated by summing 

independent uniform random variables (W) (upper panel).  

where W(t) is a Brownian motion (or Weiner process) and µ and υ are constants that 

represent drift and volatility respectively.  Equation 3.3 has a lognormal analytic solution 

(3.5)                              )()2( 2

)0()( tWteYtY υυµ +−=  

A simulation of geometric Brownian motion in discrete form follows as 

 (3.6)                                111 −−− += tttt WNNN  

where N = cell population size, t = time step and W = a random Gaussian variable.  See 

Figure 3-2.  Equation 3.6 is identical to the equation for multiplicative error in Graham et 

al. (2003).  I modify equation 3.6 slightly by letting W range uniformly from 0.0 to 1.0 

with W = 0.5 and adding the drift constant C that allows for stochastic upward drift (at C 

> 0.5) or downward drift (at C < 0.5).   
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(3.7)     11111 )( −−−−− +=+= tttttt NWCWNCNN  

At C = 0.5, eqns. 3.6 and 3.7 behave identically.  Geometric Brownian motion with 

upward drift is shown in Figure 3-3.  
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Figure 3-2.  Geometric Brownian motion in N and log N simulated by multiplying 

independent uniform random variables.  This was generated using Equation 
1.5 with C = 0.54.   
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Figure 3-3.  Geometric Brownian motion in N and log N with upward drift.  This was 
generated using Equation 1.5 with C = 0.60. 

 
Simulation of fluctuating asymmetry 

Using the MathCad 13 (Mathsoft Engineering and Education 2005), two 

independent geometric random walks were performed and stopped randomly at mean 

time t= 200 steps with some variable normal probability.  The random walks result in cell 

population size equal to tN (or L
tN  and R

tN  on left and right sides respectively).  

Fluctuating asymmetry (FA) was defined as the difference in size resulting from this 

random proportional growth on both sides of the bodies axis of symmetry plus a small 

degree of random uniformly distributed noise or 
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 (3.8)                 rvNNFA R
t

L
t +−=  

where (rv) was uniformly distributed with a range of  ±0.1( R
t

L
t NN − ).  Using a 

MathCad-based simulation in VisSim LE, the generation of individual FA values was 

repeated until a sample size of 5000 was reached.  The random noise (rv) has no effect on 

the shape of the FA distribution but fills empty bins (gaps) in distribution tails.  Because 

rv is small in comparison to R
t

L
t NN − , its effect is similar to that of measurement error 

(which would be normally distributed rather than uniform).  Schematic representation of 

the simulation process for Reed and Jorgensen (2004) model and simulation of 

fluctuating asymmetry are shown in Figure 4 and 5.  The simulation of the distribution of 

fluctuating asymmetry was compared at normal standard deviation of termination of 

growth (t) ranging from σ = 0.5, 0.8, 1.2,3 and 7 with a drift constant of C = 0.7.         

Inbreeding Experiment 

In May 2004 in Gainesville, Florida, 320 free-living Drosophila simulans were 

collected in banana baited traps and put into a large glass jar and cultured on instant rice 

meal and brewer’s yeast.  After two generational cycles 1000 individuals were collected 

in alcohol.  This was repeated again in June 2005 with 200 wild trapped flies. 

  Lines of inbred flies were created from the May 2004 wild population through eight 

generations of full sib crosses removing an estimated 75% of the preexisting 

heterozygosity (after Crow and Kimura 1970).  Initially, ten individual pairs were 

isolated from the stock culture and mated in ½ pint mason jars with media and capped 

with coffee filters.  In each generation, and in each line, and to ensure that inbred lines 

were not accidentally lost though an inviable pairing, four pairs of F1 sibs from each 

cross were then mated in ½ pint jars.  Offspring from one of these four crosses were 
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randomly selected to set up the next generation.  Of the original ten lines, only four 

remained viable after eight generations of full sib crossing.  These remaining lines were 

allowed to increase to 1000+ individuals in 1 quart mason jars and then were collected 

for analysis in 85% ethanol.  This generally took about 4 generations (8 weeks) of open 

breeding.  One completely isogenic (balancer) line of Drosophila melanogaster was 

obtained from Dr. Marta Wayne, University of Florida and also propagated and collected. 
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Figure 3-4.  Model representation of Reed and Jorgensen’s (2004) physical size 
distribution model.  Variable negative exponentially distributed stopping 
Times of random proportional growth (GBM with C = 0.5) create double 
Pareto lognormal distribution of size.   
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Figure 3-5.  A model representation of developmental instability.  Normally variable 

stopping times of random proportional growth (GBM with C > 0.5) create 
double Pareto lognormal distribution of size.  
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mounted on microscope slides.  Specimens were dried in 85% ethanol, and then pairs of 

Stochastic Geometric Growth

1

10000

1E+08

1E+12

1E+16

1E+20

1E+24

1E+28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

lo
g 

C
el

l N
um

be
r

0 50 100 150
0

2

4

GROWTH STOP TIME

NORMAL VARIATION 
IN GROWTH STOP TIME

RANDOM WALKS WITH
GEOMETRIC BROWNIAN
MOTION

SIZE DISTRIBUTION

REPEAT
SAMPLING

0 100 200 300 400 500
0

50

100

150

200



 

 

48

wings were dissected (in ethanol) and air-dried to the glass slides.  Permount was used to 

attach cover slips.  This technique prevented wings from floating up during mounting, 

which might slightly distort the landmark configuration.  Dry mounts were digitally 

photographed.  All landmarks were identified as wing vein intersections on the digital 

images (eight landmarks on each wing).  See Appendix A for landmark locations.  

Morphometric analyses 

Wing vein intersections were digitized on all specimens using TPSDIG version 

1.31 (Rohlf, 1999).  Specimens damaged at or near any landmarks were discarded.  

Fluctuating asymmetry was measured in two ways on all specimens using landmark-

based multivariate geometric morphometrics.  A multivariate size-based FA (FA 1 in 

Palmer and Strobek 2003) was calculated as absolute value of (R – L) or just R-L in 

signed FA distributions where R and L are the centroid sizes of each wing (i.e., the sum 

of the distances of each landmark to their combined center of mass or centroid location).  

In addition, a multivariate shape-based measure of FA known as the Procrustes distance 

was calculated as the square root of the sum of all squared Euclidean distances between 

each left and right landmark after two-dimensional Procrustes fitting of the data 

(Bookstein 1991; Klingenberg and McIntyre 1998; FA 18 in Palmer and Strobeck 2003; 

Smith et al. 1997).  Centroid size calculation, Euclidean distance calculation and 

Procrustes fitting were performed using Øyvind Hammer’s Paleontological Statistics 

program PAST version 0.98 (Hammer 2002).  A sub-sample of 50 individuals from the 

fourth inbred line (pp4B3) was digitized five times to estimate measurement error.  In 

these cases, measures of FA were taken as the average FA value of the five replicate 

measurements for each specimen.  Percent measurement error was also computed as 
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(ME/average FA) x 100 where )5,4,3,2,1( FAFAFAFAFAsdME = (as per Palmer and 

Strobek 2003).  For assessing whether measurement error (ME) interfered significantly 

with FA, a Procrustes ANOVA (in Microsoft Excel) was performed on the five 

replications of the 50 specimen sub-sample (Klingenberg and McIntyre 1998).  Any 

subsequent statistical analyses were performed using SPSS Base 8.0 statistical software 

(SPSS Inc.).  

Model selection and inference 

The fits of unsigned size FA to three distributional models (half-normal, lognormal, 

and double Pareto lognormal (DPLN)) were compared in the Drosophila lines, by 

calculating negative log likelihoods and Akaike Information Criteria (AIC) (Burnham 

and Anderson 1998; Hilborn and Mangel 1998).  This method penalizes more complex 

models (those with more parameters) when selecting the best-fit distributional model for 

a given dataset.  Best fitting parameters were obtained by maximizing the log-likelihood 

function for each model (Appendix B).  The maximization was performed using the 

conjugate gradient method within unconstrained solve blocks in the program MathCAD 

by MathSoft Engineering and Education Inc (2001).   

Results 

Model Simulation  

The amount of variance in termination times related directly to levels of simulated 

FA (i.e., low variance in termination time (t) gives low FA and vice versa).  I found that 

not only does amount of FA increase with increased variance in (t), but so do both 

kurtosis and the scaling effect in the distribution tails.  In Figure 3-6, normal quantile 

plots of signed FA are shown for different standard deviations in the normal variation of 

the termination of growth of geometrically expanding cell populations.  The degree of the 
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S or sigmoidal shape in the plot indicates level of leptokurtosis.  The leptokurtosis in the 

quantile plot is reduced greatly with a decrease in the standard deviation of the normal 

variation in growth termination times.   
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Figure 3-6.  Simulated distributions of cell population size and FA for different amounts 

of variation in the termination of growth (variance in normally distributed 
growth stop time).  The fit of simulated data to the normal distribution can 
determined by how closely the plotted points follow the horizontal line (a 
good fit is horizontal).   
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Experimental Results 

 Both mean unsigned size FA and shape FA decreased with inbreeding in all lines.  

I also observed that the kurtosis of signed size FA and the skewness of both unsigned size 

and shape FA follow an identical trend.  The trend was strongest in kurtosis, which 

decreased rapidly with inbreeding, indicating that, as predicted, changes in mean FA are 

influenced strongly by the shape and tail behavior of the distribution of FA (Table 3-1).   

Table 3-1.  Distribution parameters and model fit for multivariate FA in two wild 
populations and four inbred lines of Drosophila simulans and one isogenic 
line of Drosophila melanogaster.  Model fits are ∆ AIC for unsigned centroid 
size FA (zero is best fit, lowest number is next best fit).    

 
 Kurtosis 

(signed 
size FA) 

Mean 
(unsigned 
size FA) 

Mean 
(shape FA)

Scaling 
exponent 
in upper 

tail 

 
∆AIC 

HNORM 

 
∆AIC 
LGN 

 
∆AIC 
DPLN 

Wild 2004 28.3 
±0.12 

5.73 
±0.38 

0.0223 
±0.0003 

1.49 90.6 324 0.000

Wild 2005 45.9 
±0.15 

4.68 
±0.19 

0.0237 
±0.0003 

2.87 66.2 261 0.000

Inbred line 
1 (OR18D) 

2.43 
±0.11 

3.27 
±0.09 

0.0183 
±0.0002 

5.09 0.000 104 15.5 

Inbred line 
2(OR18D3) 

8.85 
±0.15 

4.24 
±0.13 

0.0212 
±0.0002 

3.10 11.50 223 0.000

Inbred line 
3 (PP4B2) 

2.90 
±0.15 

3.31 
±0.09 

0.0184 
±0.0002 

4.63 0.000 130 44.0 

Inbred line 
4 (PP4B3) 

3.30 
±0.15 

3.72 
±0.11 

0.0213 
±0.0003 

5.78 0.000 228 79.7 

Isogenic 
(mel75) 

0.550 
±0.11 

3.90 
±0.10 

0.0201 
±0.0002 

9.99 0.000 84.9 101 

 
While wild populations on the whole, demonstrated increased mean, skew and 

leptokurtosis of FA compared to inbred lines, significant differences between populations 

were found in all distributional parameters, even between each of the inbred lines 

(ANOVA mean size FA for all lines; F = 27.49, p < 0.001; ANOVA mean size FA for 

inbred lines only; F = 14.38 , p < 0.001; note shape FA also show same result).  Overall, 
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inbred lines demonstrated lower kurtosis, just slightly above that expected from a normal 

distribution (Table 1). They also had lower mean FA.  No significant differences were 

found with respect to these results according to sexes of flies.  In Figure 3-7, I show the 

distribution of FA and detrended normal quantile plots for the wild population, four 

inbred lines and one isogenic line respectively.   

As in the simulated data, the degree of the S shape in the plot indicated level of 

leptokurtosis.  The S shape in quantile plot is reduced greatly with inbreeding and nearly 

disappears in the isogenic line.  

Model Selection and Inference 

The comparison of candidate distributional models of FA demonstrated normalization 

associated with inbreeding in three of the four inbred lines (Table 3-1). In the remaining 

inbred line, the half-normal candidate model was a close second to the double Pareto 

lognormal distribution.  In the wild population samples, the distribution of unsigned size-

based FA was best described by the double Pareto lognormal distribution (DPLN), a 

lognormal distribution with scaling in both tails.  In the best fitting parameters of this 

distribution there was no observable trend in lognormal mean or variance across wild 

populations and inbred lines.  The scaling exponent of the lower tail (β in Reed and 

Jorgensen 2004) was close to one in all lines while the scaling exponent in the upper tail 

(α in Reed and Jorgensen 2004) increased with inbreeding (Table 3-1).  Both samples of 

the wild population demonstrated the lowest scaling exponent in the upper tail of the 

distribution.  The low scaling exponents here indicate divergence in variance (2004 and 

2005 where α < 3) and in the mean (2004 only where α < 2).  The inbred lines all show 

higher scaling exponents that are consistent with converging mean and variance.   
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Figure 3-7.  Distribution of fluctuating asymmetry and detrended fit to normal for two 

samples of wild population collected in Gainesville, FL in summers of 2004 
and 2005 and four inbred lines of Drosophila simulans derived from eight 
generations of full-sib crossing of the wild population of 2004.  Also included 
is one isogenic line of Drosophila melanogaster (mel75). All n = 1000.  The 
fit of data to the normal distribution can determined by how closely the 
plotted points follow the horizontal line (a good fit is horizontal). 
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The isogenic Drosophila melanogaster line demonstrated the highest scaling exponent 

and the most normalized distribution of unsigned FA.   

Measurement error was 7.6% for shape-based  FA and 13.0% for centroid size-

based FA.  In a Procrustes ANOVA (Klingenberg and McIntyre 1998) the mean squares 

for the interaction term of the ANOVA (MSInteraction) was highly significant p<0.001 

indicating that FA variation was significantly larger than variation due to measurement 

error (ME). 

Discussion 

Revealing the Genetic Component of FA 

While we should be cautious about inferring process from pattern, the very similar 

results of both the modeling and the inbreeding experiment in Drosophila seem to 

suggest the presence of a scaling component in the distribution of fluctuating asymmetry 

that is caused by a random multiplicative growth process as suggested previously by 

Graham et al. 2003.  This parameter appears to change with the genetic redundancy of the 

population which is presumably increased by genetic drift and and reduction in 

heterozygosity during inbreeding.  Specifically, the scaling exponent(s) of the upper tail 

(α) of the unsigned FA distribution, or outer tails of the signed FA distribution, are 

increased with inbreeding, causing more rapid power-law decay in the shape of the tails.  

This effect also reduces kurtosis and apparently normalizes the distribution of FA in more 

inbred populations.  This suggests that individual genetic differences in the capacity to 

control variance in the termination of random proportional growth (i.e., geometric 

Brownian motion) may be responsible for determining the shape and kurtosis of the 

distribution of FA.  In other words, leptokurtosis (kurtosis >3) in signed FA distribution 
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indicates genetic variability in the population while normality (kurtosis = 3) indicates 

genetic redundancy.     

 Because leptokurtosis is very often observed in the distribution of FA, genetic 

variability potentially underlies a large proportion of the variability observed in the FA of 

a given population.  Observed differences or changes in FA are therefore not only a 

response of development to environmental stress, but clearly also can reflect inherent 

differences in the genetic redundancy of populations.  The significantly different levels of 

mean FA among the inbred lines in this study, presumably caused by the random fixation 

of certain alleles, also suggests that there is a strong genetic component to the ability to 

buffer development against random noise.  It is assumed that the differences observed in 

FA between wild trapped and inbred populations in this study do not indicate an effect of 

inbreeding depression in the study for two reasons.  First, the four inbred lines analyzed 

in this study were vigorous in culture so the fixation of random alleles was probably not 

deleterious.  Second, and more important, inbreeding reduced FA rather than increasing it 

as would have been expected under genetic stress.   

 It is also important to note that kurtosis is potentially a much stronger indicator of 

FA than the distribution mean.  The low scaling exponents found in the non-normal 

distributions of FA in the wild populations of Drosophila simulans are capable of 

slowing and perhaps even stopping, the convergence on mean FA with increased sample 

size.  Because kurtosis is a fourth order moment, estimating it accurately also requires 

larger sample sizes.  However, if kurtosis can be demonstrated to respond as strongly to 

environmental stress as it does here to inbreeding, its potential strength as a signal of FA 

may allow new interpretation of past studies of FA without the collection of more data.  
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This may help resolve some of the current debate regarding FA as a universal indicator of 

environmental health and as a potential sexual signal in “good genes” models of sexual 

selection.  

Limitations of the Model 

There are certain aspects of the model presented here that may be 

oversimplifications of the real developmental process.  First of all, this model assumes 

developmental instability is generated left-right growing tissue fields with no regulatory 

feedback or control other than when growth is stopped.  It is very likely that left-right 

regulation is able to occur at higher levels of organization (e.g., across multiple 

developmental compartments) even though there is no evidence of regulated cell cycling 

rates beyond the distance of 6-8 cells on average within any given developmental 

compartment (Milan et al. 1995).  Therefore this model explains how fluctuating 

asymmetry is generated, not how it is regulated.  Second, this model only considers cell 

proliferation as influencing size.  It is known that both cell size and programmed cell 

death, or apoptosis, are also important in regulating body size (Raff 1992, Conlin and 

Raff 1999).  Both of these may play a more prominent role in vertebrate development, 

than they do in insect wings, where apparently growth is terminated during its 

exponential phase.  Nevertheless, this simple model seems to replicate very well, certain 

behavioral aspects of the distribution of fluctuating asymmetry in the insect wing. 

The Sources of Scaling 

The basic process generating power-law scaling effects illustrated here (Reed 2001) 

offers an alternative perspective to the often narrow explanations of power-laws caused 

by self-organized criticality in the interactions among system components (Gisiger 2000).  

The power law that results from self-organized criticality is created from the multiplicity 
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of interaction paths in the network.  As the distance between two interacting objects is 

increased in a network or multidimensional lattice, the number of potential interaction 

pathways increases exponentially, while the correlation between such paths decreases 

exponentially (Stanley 1995).  These opposing exponential relationships create the power 

law scaling observed in simulations of self-organized critical systems.  While there is no 

such “interaction” in our model, there is a power-law generated by opposing exponential 

functions.  The constant degree of change represented by the power law in both the 

statistical physics of critical systems and the mathematics of both Reed and Jorgensen’s 

process and the model given here is the result of the combined battle between both the 

exponentially increasing and decreasing rates of change (Reed 2001).  While the natural 

processes are quite different, the underlying mathematical behavior is very similar.  

Potential Application to Cancer Screening 

 Just as changes in the shape of the distribution of fluctuating asymmetry is 

normalized across a population of genetically redundant individuals, genetic redundancy 

in a population of cells may also help maintain normal cell size and appearance.  The loss 

of genetic redundancy in a tissue is a hallmark of cancer.  The abnormal gene expression 

and consequent genetic instability that characterizes cancerous tissue often results in 

asymmetric morphology in cells, tissues and tissue borders.  Baish and Jain (2000) 

review the many studies connecting fractal (scale free) geometry to the morphology of 

cancer.  Cancer cells also are typically pleomorphic or more variable in size and shape 

than normal cells and this pleomorphy is associated with intercellular differences in the 

amount of genetic material (Ruddon 1995).  Frigyesyi et al. (2003) have demonstrated a 

power-law distribution of chromosomal aberrations in cancer.  Currently the type of 

distributional shape of the pleomorphic variability in cell size is not known, or at least not 
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published.  However, Mendes et al. (2001) demonstrated that cluster size distributions of 

HN-5 (cancer) cell aggregates in culture followed a power-law scaled distribution.  

Furthermore these authors also demonstrated that in MDCK (normal) cells and Hep-2 

(cancer) cells, cluster size distributions transitioned from short-tailed exponential 

distributions to long-tailed power-law distributions over time.  The transition is 

irreversible and is likely an adaptive response to high density and long permanence in 

culture due to changes in either control of replication or perhaps cell signaling.  Taken 

collectively, these studies may suggest that scaling at higher levels of biological 

organization observed in cancer is due to increased relative differences in length of cell 

cycling rates of highly pleomorphic cell populations that have relatively larger 

intercellular differences in amount of genetic material.  The stochastic growth model I 

have proposed as the basis for higher variability in population level developmental 

instability or FA may also provide a possible explanation for higher variability in the cell 

sizes of cancerous tissue.  If genetic redundancy in growing tissue has the same 

distributional effect as genetic redundancy in populations of organisms and tends to 

normalize the observed statistical distribution, then one might predict that the genetic 

instability of cancerous tissue would create a scaling effect that causes pleomorphy in 

cells and scaling in cell cluster aggregations.  Statistical comparison of cell and cell 

cluster size distributions in normal and cancerous tissues may provide a useful and 

general screening technique for detecting when genetic redundancy is compromised by 

cancer in normal tissues.  

Conclusion 

Until now, the basis of fluctuating asymmetry has been addressed only with 

abstract models of hypothetical cell signaling, or elsewhere, at the level of selection 
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working on the organism with potential mechanism remaining in the black box.  

However, fluctuating asymmetry must first and foremost be envisioned as a stochastic 

process occurring during tissue growth, or in other words, occurring in an exponentially 

expanding population of cells.  As demonstrated in the model presented here, this 

expansion process can be represented by stochastic proportional (geometric) growth that 

is terminated or observed randomly over time.  These results imply that the fluctuating 

asymmetry observed in populations is not only related to potential environmental 

stressors, but also to a large degree, the underlying genetic variability in those molecular 

processes that control the termination of growth.  Therefore, fluctuating asymmetry 

responses to stress may be hard to interpret without controlling for genetic redundancy in 

the population.  Both the simulation and experimental results suggest that measures of 

distributional shape like kurtosis, scaling exponent and tail weight may actually be a 

strong signal of variability in the underlying process that causes developmental 

instability.  Therefore the kurtosis parameter of the fluctuating asymmetry distribution 

may provide more information about fluctuating asymmetry response than does a 

populations’ average or mean fluctuating asymmetry.  This may provide a novel method 

by which to resolve conflicts in previous under-sampled research without the collection 

of more data. 
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CHAPTER 4 
TEMPERATURE RESPONSE OF FLUCTUATING ASYMMETRY TO IN AN APHID 

CLONE: A PROPOSAL FOR DETECTING SEXUAL SELECTION ON 
DEVELOPMENTAL INSTABILITY 

Introduction 

Developmental instability is a potentially maladaptive component of individual 

phenotypic variation with some unknown basis in both gene and environment (Møller 

and Swaddle 1997, Fuller and Houle 2003).  Developmental instability is most often 

measured by the manifestation of fluctuating asymmetry (FA), the right minus left side 

difference in size or shape in a single trait across the population (Palmer and Strobek 

1986, 2003; Parsons 1992, Klingenberg and McIntyre 1998).  Because FA is thought to 

indicate stress during development, the primary interest in the study of FA has been its 

potential utility as an indicator of good genes in mate choice (Møller 1990, Møller and 

Pomiankowski 1993) or its utility as a general bioindicator of environmental health 

(Parsons 1992).   

The Genetic Basis of FA 

For FA to become a sexually selected trait, it must be assumed that it has a 

significant genetic basis, and can therefore evolve (Møller 1990, Møller and 

Pomiankowski 1993).  However, researchers who use FA as a bioindicator of 

environmental health often assume that FA is a phenotypic response that is mostly 

environmental in origin (Parsons 1992, Lens et al. 2002).  Studies of the heritability of 

FA seem to indicate low heritability for FA exists (Whitlock and Fowler 1997, Gangestad 
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and Thornhill 1999).  However, because FA is essentially a variance that is often 

measured with only two data points per individual, FA may have a stronger but less 

easily detectable genetic basis (Whitlock 1996, Fuller and Houle 2003).  Additive genetic 

variation in FA in most studies has been found to be minimal, but several quantitative 

trait loci studies suggest significant dominance and character specific epistatic influences 

on FA (Leamy 2003, Leamy and Klingenberg 2005).  Babbitt (chapter 3) has 

demonstrated that a population’s genetic variability affects the distributional shape of FA.  

So while studies investigating mean FA may be inconclusive, changes in the population’s 

distributional shape seem to indicate potential genetic influence on FA.  However, no 

studies have observed FA in a clonal organism for the express purpose of assessing 

developmental instability that is purely environmental (i.e., non-genetic) in its origin (i.e., 

developmental noise).  

The Environmental Basis of FA  

It has long been assumed that FA is the result of some level of genetically-based 

buffering of additive independent molecular noise during development.  Because of the 

difference in scale between the size of molecules and growing cells it would be unlikely 

that molecular noise would comprise an important source of variation in functioning 

cells.  However, Leamy and Klingenberg (2005) rationalize that molecular noise could 

only scale to the level of tissue when developmentally important molecules exist in very 

small quantity (e.g., DNA or protein) and therefore FA may represent a stochastic 

component of gene expression.  This is somewhat similar in spirit to the Emlen et al. 

(1993) explanation of FA that invokes non-linear dynamics of signaling and supply that 

may also occur during growth.  Here FA is thought to be the result of the scaling up of 
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compounding temporal asymmetries in signaling between cells during growth.  In this 

model, hypothetical levels of signaling compounds (morphogens) and or growth 

precursors used in the construction of cells vary randomly over time.  When growth 

suffers less interruption, thus when it occurs faster, there is also less complexity (or 

fractal dimension) in the dynamics of signaling and supply.  Graham et al. (1993) suggest 

that nonlinear dynamics of hormonal signaling across the whole body may also play a 

similarly important role in the manifestation of FA.  However, while the levels of FA are 

certainly influenced by the regulation of the growth process, both Graham et al. (2003) 

and Babbitt (chapter 3) also suggest that FA levels reflect noise during cell cycling that is 

amplified by exponentially expanding populations of growing cells.        

Although the proximate basis of FA is not well understood, its ultimate 

evolutionary basis, while heavily debated, is easier to understand.  Møller and 

Pomiankowski (1993) first suggested that strong natural or sexual selection can remove 

regulatory steps controlling the symmetric development of certain traits (e.g., 

morphology used in sexual display).  They suggest that with respect to these traits (and 

assuming that they are somehow costly to produce), individuals may vary in their ability 

to buffer against environmental stress and developmental noise in relation to the size of 

their individual energetic reserves; which are in turn often indicative of individual genetic 

quality.  Therefore high genetic quality is associated with low FA.   

Most existing proximate or growth mechanical explanations of FA assume that 

rapid growth is less stressful in the sense that fewer interruptions of growth by various 

types of noise should result in lower FA (Emlen et al. 1993, Graham et al. 1993).  

However, ultimate evolutionary explanations of FA assume that rapid growth is 
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potentially more stressful because it is energetically costly and therefore rapid growth 

should increase the level of FA when energy supply is limiting (Møller and 

Pomiankowski 1993).  This high FA is relative and so should be especially prominent in 

individuals of lower genetic quality who can least afford to pay this additional energy 

cost.  This fundamental difference between the predictions of proximate (or mechanistic) 

level and ultimate evolutionary level effects of temperature on FA is shown in Figure 1.  

The theoretical difference in the correlation of temperature and growth rate to FA in both 

the presence and absence of energetic limitation could be used to potentially detect sexual 

selection on FA.  However it first should be confirmed that FA should decrease with 

more rapid growth in the absence of energetic limitation to growth and genetic 

differences between individuals in a population.  This later objective is the primary goal 

of this study. 

Temperature and FA in and Aphid Clone 

At a very basic level, entropy or noise in physical and chemical systems has a 

direct relationship with the physical energy present in the system.  This energy is 

measured by temperature.  Because FA is speculated to tap into biological variation that 

is somewhat free of direct genetic control, it may therefore respond to temperature in 

simple ways.     

First, increased temperature may increase molecular entropy which may in turn 

increase developmental noise during development thereby increasing FA.  Second, 

increased temperature may act as a cue to shorten development time (as in many aphids 

where higher temperature reduces both body size and development time), thereby 

reducing the total time in which developmental errors may occur.  This should reduce 
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FA.  A third possibility is that a species specific optimal temperature exists.  If so, FA 

should increase while approaching both the upper and lower thermal tolerance limits of 

organisms.   

PROXIMATE LEVEL EFFECT

ULTIMATE LEVEL EFFECT

TEMPERATURE

DEVELOPMENTAL 
TIME

GROWTH RATE

FLUCTUATING 
ASYMMETRY

+

-

-

+

-

NON-OPTIMAL
TEMPERATURE

DEVELOPMENTAL 
TIME

GROWTH RATE

FLUCTUATING 
ASYMMETRY

- -

+

-ENERGETIC
RESERVES

STRESS

+

+
+

- -

 
Figure 4-1.  Predicted proximate and ultimate level correlations of temperature and 

growth rate to fluctuating asymmetry are different.  Ultimate level 
(evolutionary) effects assume energetic limitation of individuals in the system.  
Proximate level (growth mechanical) effects do not.  Notice that temperature 
and fluctuating asymmetry are negatively correlated in the proximate model 
while in the ultimate model they are positively correlated. 

Only a few studies have directly investigated the relationship between FA and 

temperature.  The results are conflicting.  FA is either found to increase on both sides of 

an “optimal” temperature (Trotta et al. 2005, Zakarov and Shchepotkin 1995), to be 

highest at low temperature (Chapman and Goulson 2000), to simply increase with 

increasing temperature (Savage and Hogarth 1999, Mpho et al. 2002) or not to respond 
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(Hogg et al. 2001).  None of these studies investigate the relationship between 

developmental noise (FA in a clonal line) and temperature. 

The characterization of developmental noise in response to temperature was 

investigated in this study using the cotton aphid, Aphis gossipyii.  These aphids reproduce 

parthenogenetically, are not energetically limited in their diet (because they excrete 

excess water and sugar as “honeydew”) and produce wings that are easily measured using 

multiple landmarks.  They demonstrate large visible variation in body size, wing size and 

even wing FA.  The visible levels of wing asymmetry in cotton aphids reflect levels of 

FA that are about four times higher than that observed in other insect wings (Babbitt et al. 

2006, Babbitt in press).  Because parthenogenetic aphids cannot purge deleterious 

mutations each generation and because Florida clones often never use sexual 

reproduction to produce over-wintering eggs, this remarkably high FA may be the result 

of Muller’s ratchet.  Cotton aphids are also phenotypically plastic in response to 

temperature, producing smaller lighter morphs at high temperatures and larger dark 

morphs at low temperatures.  This feature allows observation of two genetically 

homogeneous groups in which different gene expression patterns (causing the color 

morphs) exist.  The central prediction is that of the proximate effect model: that in the 

absence of energetic limitation and genetic variation, temperature and environmentally 

induced FA (or developmental noise) should be negatively correlated in a more or less 

monotonic relationship.    

Methods 

In March 2003, a monoclonal population of Cotton Aphids (Aphis gossipyii 

Glover) was obtained from Dr. J.P. Michaud in Lake Alfred, Florida and was brought to 
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the Department of Entomology and Nematology at the University of Florida.  The culture 

was maintained on cotton seedlings (Gossipium) grown at different temperatures (12.5°C, 

15°C, 17°C, 19°C, 22.5°C and 25°C with n = 677 total or about 100+ per treatment) 

under artificial grow lights (14L:10D cycle).  Because of potential under-sampling caused 

by a non-normal distribution of FA (see Babbitt et al. 2006), a second monoclonal 

population collected from Gainesville, FL in June 2004 was reared similarly but in much 

larger numbers at 12.5°C, 15°C, 17°C, 19°C, and 25°C  (n = 1677 or about 300+ per 

treatment).   

Development time for individual apterous cotton aphids (Lake Alfred clone) were 

determined on excised cotton leaf discs using the method Kersting et al. (1999).  Twenty 

randomly selected females were placed upon twenty leaf discs (5 cm diameter) per 

temperature treatment.  Discs were set upon wet cotton wool in petri dishes and any first 

instar nymphs (usually 3-5) appearing in 24 hours were then left on the discs.  

Development time was taken as the average number of days taken to reach adult stage 

and compared across temperatures.  Presence of shed exoskeleton was used to determine 

instar stages.  Cotton was wetted daily and leaf discs were changed every 5 days.  

Humidity was maintained at 50±5%.   

In each temperature treatment, single clonal populations were allowed to increase 

on plants until crowded in order to stimulate alate (winged individuals) production.  

Temperature treatments above 17°C produced light colored morphs that were smaller and 

tended to feed on the undersides of leaves of cotton seedlings.  Temperature treatments 

below 17°C produced larger dark morphs that tended to feed on the stems of cotton 

seedlings.  Alatae were collected using small brushes dipped in alcohol and stored in 80% 
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ethanol.  Wings were dissected using fine insect mounting pins and dry mounted as pairs 

on microscope slides.  Species identification was by Dr. Susan Halbert at the State of 

Florida Department of Plant Industry in Gainesville. 

Specimens were dried in 85% ethanol, and then pairs of wings were dissected (in 

ethanol) and air-dried to the glass slides while ethanol evaporated.  Permount was used to 

attach cover slips.  This technique prevented wings from floating up during mounting, 

which might slightly distort the landmark configuration.  Dry mounts were digitally 

photographed.  Six landmarks were identified as the two wing vein intersections and four 

termination points for the third subcostal.  See Appendix A for landmark locations.    

     Wing vein intersections were digitized using TPSDIG version 1.31 (Rohlf, 

1999).  Specimens damaged at or near any landmarks were discarded.  Fluctuating 

asymmetry was calculated using a multivariate geometric morphometric landmark-based 

method.  All landmarks are shown in Appendix A.  FA (FA 1 in Palmer and Strobek 

2003) was calculated as absolute value of (R – L) where R and L are the centroid sizes of 

each wing (i.e., the sum of the distances of each landmark to their combined center of 

mass or centroid location).  In addition, a multivariate shape-based measure of FA known 

as the Procrustes distance was calculated as the square root of the sum of all squared 

Euclidean distances between each left and right landmark after two-dimensional 

Procrustes fitting of the data (Bookstein 1991; Klingenberg and McIntyre 1998; FA 18 in 

Palmer and Strobeck 2003; Smith et al. 1997).  This removed any difference due to size 

alone.  Centroid size calculation, Euclidean distance calculation and Procrustes fitting 

were performed using Øyvind Hammer’s Paleontological Statistics program PAST 

version 0.98 (Hammer 2002).  Percent measurement error was computed as (ME/average 
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FA) x 100 where 3/)313221( FAFAFAFAFAFAME −+−+−=  in a smaller subset 

(200 wings each measured 3 times = FA1, FA2 and FA3) of the total sample.  All 

subsequent statistical analyses were performed using SPSS Base 8.0 statistical software 

(SPSS Inc.).  Unsigned multivariate size and shape FA as well as the kurtosis of signed 

FA were then compared at various temperatures using one-way ANOVA.   

Results 

Development time (Figure 4-2) was very similar to previously published data 

(Kersting et al. 1999, Xia et al. 1999) decreasing monotonically at a much steeper rate in 

dark morphs than in light morphs.  The distributional pattern of centroid size, size FA and 

shape FA appear similar exhibiting right log skew distributions (Figure 4-3).  Similar 

distributional patterns are observed within temperatures (not shown) as that observed 

across temperatures (Figure 4-3). 
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Figure 4-2.  Cotton aphid mean development time ±1 SE in days in relation to 

temperature (n= 531). 
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Figure 4-3.  Distribution of isogenic size, size based and shape based FA in monoclonal 

cotton aphids grown in controlled environment at different temperatures. 
Distributions within each temperature treatment are similar to overall 
distributions shown here. 
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Coefficient of variation for FA was slightly higher for dark morphs (12.5 C = 

92.59%, 15 C = 93.02%, 17 C = 88.95%, 19 C = 79.02%, 22.5 C = 80.00% and 25 C = 

85.35%).  Mean isogenic FA (both size and shape) was highly significantly different 

across temperatures (ANOVA F = 6.691, df  between group = 4, df within group = 1673,  

p < 0.001) in the Gainesville FL clone (Figure 4-4) but not in the Lake Alfred clone 

(ANOVA F = 1.992, df between group = 5, df within group = 672,  p < 0.078). This is an 

indication of undersampling in the Lake Alfred clone.  In the Gainesville clone, mean 

centroid size FA (Figure 4-4A) and development time (Figure 4-2) follow a nearly 

identical pattern, decreasing rapidly at first then slowing with increased temperature.   
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Figure 4-4.  Mean isogenic FA for (A.) centroid size- based and (B.)  Procustes shape-
based) in monoclonal cotton aphids (collected in Gainesville FL) grown on 
isogenic cotton seedlings at different temperatures.   
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Mean shape FA was also significantly different across temperature classes 

(ANOVA F = 4.863, df within group = 4, df between group = 1673, p = 0.001) but this 

difference is due solely to elevated FA in the 12.5°C group (Figure 4-4B).  Less than one 

percent of the variation in FA was due to variation in body size (r = -0.101 for shape FA; 

r = 0.088 for size FA).  Kurtosis in the shape of the distribution of size based FA (Figure 

4-5) was significantly higher in dark morphs than in light morphs (t = -2.21 , p = 0.027).  

Within each morph (light or dark), kurtosis in the distribution of FA appears to increase 

with temperature slightly (Figure 4-5).  Measurement error for shape FA was estimated 

at2.6% (Lake Alfred clone) and 2.2% (Gainesville clone).  For size FA these estimates 

were 6.1% (Lake Alfred) and 5.7% (Gainesville). 
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Figure 4-5.  Kurtosis of size-based FA in monoclonal cotton aphids grown on isogenic 

cotton seedlings at different temperatures. 
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Discussion 

It appears that the prediction of the proximate effect model holds in the case of this 

population of cotton aphid, which, in general, is not energetically limited and in this 

study, is not genetically variable.  Temperature and growth rate (which are positively 

correlated in insects) are negatively associated with purely environmentally derived FA 

(i.e., developmental noise).  This confirms the predictions of several proximate models of 

the basis of FA.  Furthermore, it appears that centroid size-based FA is a simple function 

of development time.  Because individual genetic differences in the capacity to buffer 

against developmental noise are, in a sense, controlled for in this study by the use of 

natural clones, the response of FA to temperature in this study represents a purely 

environmental response of FA.  The fact that aphids excrete large amount of water and 

sugar in the form of honeydew, as well as the lack of a strong correlation between FA and 

size also suggests that there is no real energetic “cost” to being large in the aphids in this 

study.  An important next step will be to compare this result to the association of growth 

rate to FA in genetically diverse and energetically limited sexually selected traits where 

the predicted association between growth rate and FA would be the opposite of this 

study.       

It also appears that because the environmental component of size-based isogenic 

FA is largely a function of developmental time and temperature, dark morphs of cotton 

aphids, which have much longer development time than light morphs, also have 

significantly higher FA.  The temperature trend in mean FA within both light and dark 

morphs, where development times are similar, is not consistent although it appears that 

the kurtosis of FA increases slightly with temperature within each morph.   
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 It is very interesting that there is a strong difference in kurtosis between the two 

temperature morphs in this study.  Previous work suggests that kurtosis is related to 

genetic variability in a population (Babbitt in press).  The difference observed here in 

light of genetic homogeneity in the monoclonal aphid cultures, suggests that there may be 

a difference in developmental stability of light and dark aphid morphotypes that is due 

primarily to the differential expression of genes in each phenotype.    

It is surprising that temperature trends in mean developmental noise are slightly 

different regarding whether a size or shape-based approach was used.  In populations 

where individuals are genetically diverse, both size and shape-based measures of FA are 

often correlated to some degree (as they are here too).  However, size and shape are 

regulated somewhat differently in that cell proliferation is mediated both extrinsically via 

cyclin E acting at the G1/S checkpoint of the cell cycle, predominantly affecting size, and 

intrinsically at via cdc25/string at the G2/M checkpoint, predominantly affecting pattern 

or shape (Day and Lawrence 2000).  Extrinsic mechanisms regulate size through the 

insulin pathway and its associated hormones (Nijhout 2003) providing a link between 

size and the nutritional environment.  This may explain why size FA follows 

development time more closely than shape FA in this study.   

Size is usually less canalized than is shape and therefore more variable.  While this 

makes the size-based measure of FA generally attractive, it has been found in previous 

work (Babbitt et al. 2006) that population averages of size-based FA are often so variable 

that they are frequently under-sampled because of the broad and often long tailed 

distribution of FA.  Shape-based FA does not suffer as much from this problem and so its 

estimation is much better although it may be less indicative of environmental influences 
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and perhaps therefore better suited for genetic studies of FA.  Because size FA has been 

adequately sampled in this study and because size is more heavily influenced by 

environmental factors like temperature, I find that size-based FA is the more interesting 

measure of developmental instability in this study.   

 In general, it is clear that developmental noise is not constant in genetically 

identical individuals cultured under near similar environments.  The overall distribution 

pattern in both size and shape FA is log skewed even within temperature classes.  This 

suggests that sampling error due solely to random noise can play a very significant role in 

FA studies.  Furthermore, it appears that the response of FA to the environment is 

potentially quite strong.  This suggests that FA may indeed be a responsive bioindicator, 

however its response will not be very generalizable in environments with fluctuation in 

temperature.     

 In conclusion, the environmental response of developmental noise to temperature 

in absence of genetic variability and nutrient limitation supports an important prediction 

of theoretical explanations of the proximate basis of FA.  This prediction is that FA 

should decrease with growth rate (and temperature) in ectothermic organisms.  Because it 

is only in sexually selected traits that the opposite prediction should hold, that FA should 

increase and not decrease with growth rate, the results presented here may offer a useful 

method for discriminating between FA that is under sexual selection and FA that is not.  
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CHAPTER 5 
CONCLUDING REMARKS AND RECOMMENDATIONS  

In this dissertation, I confirm some existing hypotheses concerning FA and provide 

a new explanatory framework that explains alteration in the distribution of fluctuating 

asymmetry (FA) and its subsequent effect upon mean FA.  The basis of FA and the 

influences that shape its response to genes and the environment in populations can be 

suitably modeled by stochastic proportional growth in expanding populations of cells on 

both sides of the body that are terminated with a small degree of genetically-based 

random error.  I model stochastic growth with geometric Brownian motion, a random 

walk on a log scale.  And I also model error in terminating growth with a normal 

distribution.  The resulting distribution of FA is a lognormal distribution characterized by 

power-law scaled tails.  Because under a power-law distribution, increased sample size 

increases the chance of sampling rare events under these long tails, convergence to the 

mean is potentially slowed or even stopped depending on the scaling exponents of the 

power-law describing the tails.  I demonstrated that the effect of reduced convergence to 

the mean is substantial and has probably caused much of the previous work on FA to be 

under-sampled (Chapter 1).  I have also demonstrated that the scaling effect in the 

distribution of FA is directly related to genetic variation in the population.  Therefore a 

low scaling exponent and also high kurtosis is associated with a large degree of genetic 

variation between individuals in their ability to precisely terminate the growth process 

(Chapter 2).  I also demonstrate that when genetic differences do not exist (where FA is 

comprised of only developmental noise) and when development is not limited 
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energetically, such as in a parthenogenetic aphid clone, FA depends upon developmental 

time (Chapter 3).   

How Many Samples Are Enough?  

The answer to this clearly depends upon whether researchers chose to study FA in 

size or FA in shape.  The required sample size depends upon the distributional type and 

parameters of the distribution of FA. As previously discussed, FA distributions differ 

depending upon whether FA is based on size or shape differences between sides.  As 

demonstrated in chapter 1, multivariate measures of FA based upon shape, such as 

Procrustes Distances, tend to have distributional parameters that allow convergence to the 

mean that is about five times more rapid than either univariate or multivariate measures 

of FA based upon size (Euclidian distance or centroid size).  While this information 

might seem to favor a shape-based approach, there are some other very important 

considerations given below.  In the end, sample size must be independently evaluated in 

each study depending on the magnitude of asymmetry that one wishes to detect between 

treatments or populations.  As a general rule, if shape FA is used, 100-200 samples may 

suffice, but if size FA is used then many hundreds or even a thousand samples may be 

required to detect a similar magnitude difference.    

What Measure of FA is best? 

The handicap of sampling requirements of size-based FA aside, it appears that 

measures of the distributional shape of FA, like kurtosis, scaling exponent in the upper 

tail and skewness are strongly related to similar but smaller changes in mean size FA 

(chapter 2).  Because size FA is most commonly used in past studies of FA, these 

measures of distribution shape might allow clearer conclusions to be drawn from 

literature reviews and meta-analyses as well as individual studies of FA where the 
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collection of more data is not possible.  My work linking shape of the FA distribution to 

the genetic variability of the population will require that future studies of FA which are 

focused on the environmental component of FA be controlled for genetic differences 

between populations.  Where FA is sought as a potential bioindicator of environmental 

stress, the potentially differing genetic structure of populations will need to be considered 

in order to make meaningful conclusions about levels of FA.  Additionally, because in the 

absence of genetic variation in monoclonal aphids, size FA is directly related to the total 

developmental times of individuals (chapter 3), it may a better choice than shape FA for 

studies of environmental influences on FA.   

In most organisms, body size is less canalized than body shape.  Body size is highly 

polygenic and depends upon many environmentally linked character traits.  However 

body shape or patterning is determined by a sequential progression of the activity of far 

fewer genes.  Body size is also regulated at a different checkpoint during the cell cycle 

than is body pattern formation or shape (Day and Lawrence 2000).  Patterning or shape is 

regulated at G2/M checkpoint while size is regulated at G1/S checkpoint.  The latter 

checkpoint is associated with the insulin pathway, linking size to nutrition and hence to 

the environment.  Because of this the study of environmental responses of FA may 

ultimately be best served by using multivariate size-based measures of FA (i.e., centroid 

size FA) while at the same time making sure to collect enough samples to accurately 

estimate the mean.     

 In conclusion, multivariate size FA may be the better metric for large studies 

interested in the effects of environmental factors upon FA.  Where data is harder to come 

by (e.g., vertebrate field studies), multivariate shape FA may perform better with the 
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caveat that shape and pattern are less likely to vary in a population than does size. 

Because centroid size must be calculated in order to derive Procrustes distance, both 

measures can easily and should be examined together. 

Does rapid growth stabilize or destabilize development? 

 The effects of temperature and growth rate on FA appear to support the proximate 

model which predicts that FA declines with increasing growth rates (Figure 4-3).  Aphids 

from the Gainesville clone decrease mean FA in response to increased temperature and 

growth rate.  It is likely that the Lake Alfred clone is under-sampled and therefore 

estimates of mean FA are not accurate in that sample.  The results of the Gainesville 

clone, which was sampled adequately, suggests that the prediction of proximate models 

of the basis of FA (Emlen et al. 1993, Graham et al. 1993), that rapid growth should 

decrease FA holds true.  Møller’s hypothesis that rapid growth is stressful because of 

incurred energetic costs does not appear to hold in the case of aphids.  Of course aphids, 

being phloem feeders, generally have access to more water and carbon than they ever 

need.  This is evidenced by analysis of honeydew composition in this and many other 

aphid species.  Growth and reproduction in aphids is probably more limited by nitrogen 

than by water or energy (carbon).  So it would seem that this system may not be a very 

good one in which to assess Møller’s hypothesis directly.  It should be further 

investigated whether FA of sexually selected traits in energetically limited, genetically 

diverse populations is positively associated with growth rate as is predicted by the 

ultimate or evolutionary model presented in Chapter 4. 

Can fluctuating asymmetry be a sexually selected trait? 

 Given that a genetically altered population (chapter 3) demonstrates a consistent 

response in the shape of the FA distribution does suggest that a potentially strong genetic 
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basis for FA exists, but is not easily observable through levels of mean FA.  This implies 

some heritability exists and possibly opens the door for selection to act upon FA in the 

context of mate choice.  However, in the future it must be demonstrated, with appropriate 

sample sizes, that the level of FA in the laboratory can be altered by selection for 

increased or decreased FA.  The opposing predictions of the proximate or mechanistic 

and ultimate (evolution through sexual selection) explanations of FA, regarding the 

relationship of temperature, growth rate and FA may offer a method for detecting sexual 

selection upon FA (chapter 4).  If FA has evolved as an indicator of good genes, and 

hence has related energetic costs, the expectation that FA should increase with growth 

rate and temperature (in ectotherms) is plausible.  Otherwise, if FA is caused by random 

accumulation of error during development, then the expectation is reversed.  FA should 

decrease with growth rate and temperature as I have demonstrated in a clonal population 

of aphids that are not energetically limited (chapter 4). 

Is fluctuating asymmetry a valuable environmental bioindicator? 

 Given that the genetic structure of a population (chapter 3) has potentially strong 

effects upon the shape and location (mean) of the distribution of FA, the usefulness of FA 

as a bioindicator of environmental stress has to be questioned.  Average levels of FA of 

populations would be difficult to interpret or compare without additional information 

regarding genetic heterogeneity.  However, provided that the study of FA and population 

genetics were undertaken simultaneously, this problem could be avoided.  So FA could 

still be of use in this regard, however its expense and ease of use compared to other 

bioindicators would need to be reassessed.     
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Scaling Effects in Statistical Distributions: The Bigger Picture 

This dissertation demonstrates that underlying distributions of some biological data 

can contain partial self-similarity or power-law scaling.  The proper model for describing 

data such as this sits at a midpoint between those models used in classical statistics and 

those of statistical physics: Levy statistics (Bardou et al. 2003).  To my knowledge, this 

work represents the first application of such a model in biology.    

 The sources of power-law scaling in the natural sciences are diverse.  Sornette 

(2003) outlines 14 different ways that power-laws can be created, some of which are very 

simple.  The hypothesis that all power-law scaling in nature is due to a single phenomena 

such as self-organized criticality (SOC) (Bak 1996, Gisiger 2000) or highly optimized 

tolerance (HOT) (Newman 2000) is unlikely.  Reed (2001) suggests that the model I have 

used here, stochastic proportional growth that is observed randomly, may explain a great 

deal of power-law scaled size distributions formerly speculated to have a single cause 

like SOC or HOT.  These phenomena include distributions of city size (Zipf’s law), 

personal income (Pareto’s Law), sand particle size, species per genus in flowering plants, 

frequencies of words in sequences of text, sizes of areas burnt in forest fires, and species 

body sizes, just to name a few examples.   

One of the most common ways that power-laws can be obtained is by combining 

exponential functions.  This is effect is also observed when positive exponential/ 

geometric/proportional growth is observed with a likelihood described by to a negative 

exponential function such as in Reed and Jorgensen’s (2004) model for generating size 

distributions.  Power laws generated by combing exponential functions are also present in 

the statistical mechanics of highly interactive systems (e.g., SOC) where the correlation 

in behavior between two nodes or objects in an interaction network or lattice decreases 
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exponentially with the distance between them while the number of potential interaction 

paths increases exponentially with the distance between them (Stanley 1995).  In 

Laplacian fractals, or diffusion limited aggregations observed in chemical 

electrodeposition and bacterial colony growth (Viscek 2001) there may be a similar 

interplay between exponential growth (doubling) and the diffusion of nutrients supporting 

growth which are governed by the normal distribution, of the form
2xey −= .   

 The exponential function holds a special place in the natural sciences.  Any 

frequency dependent rate of change in nature, or in other words, any rate of change of 

something that is dependent on the proportion of that something present at that time, is 

described by the exponential function.  Therefore it finds application to many natural 

phenomena including behavior of populations, chemical reactions, radioactive decay, and 

diffusion just to name a few.  It seems only fitting that many of the power-laws we 

observe in the natural sciences probably owe their existence to the interplay of 

exponential functions, one of the most common mathematical relationships observed in 

nature.        

As far as we can ascertain from the recording of ancient civilizations, human beings 

have been using numbers for at least 5000 years if not longer.  And yet the concepts of 

probability are a relatively recent human invention.  The idea first appears in 1545 in the 

writings of Girolamo Cardano and is later adopted by the mathematicians, Galileo, 

Fermat, Pascal, Huygens, Bernoulli and de Moivre in discussions of gambling over the 

next several hundred years.  The concepts of odds and of random chance are not 

generalized until the early twentieth century by Andreyevich Markov and not formalized 

into mathematics until the work of Andrei Kolmogorov in 1946.   
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 The role of uncertainty in nature is yet to be resolved.  Does uncertainty lie only 

with us or does it underlie the very fabric of the cosmos?  Most 19th century scientists 

(excepting perhaps Darwin) believed that the universe was governed by deterministic 

laws and that uncertainty is solely due to human error.  The first application of statistical 

distributions by Carl Frederick Gauss and Pierre Simon Laplace were concerned only 

with the problem of accounting for measurement error in astronomical calculations.  The 

more recent view, that uncertainty is something real, was largely the work of early 

twentieth century quantum theorists Werner Heisenberg and Erwin Schrodinger and the 

statistical theory embodied in the work of Sir Ronald Fisher.  The basic conceptual 

revolution in modern physics was that observations cannot be made at an atomic level 

without some disturbance, therefore while one might observe something exactly in time, 

one cannot predict how the act of observing will affect the observed in the future with 

any degree of certainty (at least at very small scales).  This is Heisenberg’s Uncertainty or 

Indeterminancy Principle.   

Scientists observe natural “laws” only through emergent properties of many atoms 

observed at vastly larger scales where individual behavior is averaged into a collective 

whole.  Jakob Bernoulli’s Law of Large Numbers, Abraham de Moivre’s bell shaped 

curve, and Sir Ronald Fisher’s estimation of the mean are also examples of how scientists 

rely upon emergent properties of large systems of randomly behaving things in order to 

make sense of what is thought to be fundamentally uncertain world.  However, this 

probabilistic view of the natural world has been challenged in recent decades by some 

mathematicians who are again championing a deterministic view of nature.  Observations 

by Edward Lorenz, Benoit Mandelbrot and others, of simple and purely deterministic 
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equations that behave in complex unpredictable ways, has led to a revival in the 

deterministic view among mathematicians; in this case, uncertainty is a product of human 

inability to perceive systems that are extremely sensitive to initial starting conditions.  

For this reason, this new view is often called “deterministic chaos”.  And so the question 

as to whether uncertainty is real or imagined is yet to be resolved by modern science. 

One remarkable observation of this latest revolution in mathematics is the frequent 

occurrence of scale invariance or power-law scaling in systems that exhibit this sort of 

complex and unpredictable behavior.  And so just as the normal distribution or bell curve 

is an emergent property governing the random behavior of independent objects, the 

power-law appears to be an emergent property of nature as well; one that seems not only 

to often to appear in the behavior of interacting objects (i.e., critical systems) but in 

systems where growth in randomly observed as well.  Statistical physics now recognizes 

two classes of “stable laws”, one that leads to the Gaussian or normal distribution and 

another that is Levy or power-law distributed.  In the former class, emergent behavior is 

governed by commonly occurring random events while in the latter class the behavior of 

the group is governed by a few rarely occurring random events.  As I have already 

reviewed earlier, we find that convergence to the mean under these two frameworks can 

be radically different.  Yet both are present in the natural world, and as I have shown in 

my work, both of these classes of behavior can underlie naturally occurring distributions, 

causing partial scale invariance in real data.  It is my conviction that the biological 

sciences must in the future adopt the statistical methods of working under both of these 

frameworks and not simply make assumptions of normality whenever and wherever 

random events are found to occur.  
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APPENDIX A 
LANDMARK WING VEIN INTERSECTIONS CHOSEN FOR ANALYSISOF 

FLUCTUATING ASYMMETRY 

 
Figure A1.  Six landmark locations digitized for Aphis gossipyii  

 

 
Figure A2.  Six landmark locations digitized for Apis mellifera  
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Figure A3.  Six landmark locations digitized for Chrysosoma crinitus 

 
Figure A4.  Eight landmark locations digitized for Drosophila simulans 
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APPENDIX B 
USEFUL MATHEMATICAL FUNCTIONS 

      The following is a list of the probability density functions for candidate models of  

the distribution of fluctuating asymmetry.  Log likelihood forms of these functions were 

maximized to obtain best fitting parameters of each model for our data.     

Asymmetric Laplace Distribution  

(see Kotz et al. 2001) 
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where θ = location, σ = scale and κ = skew index (Laplace when κ = 1) 

Half-Normal Distribution 
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where µ= minimum data value and θ = dispersion 

Lognormal Distribution 

(see Evans 2000 or Limpert et al. 2001) 
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where ν = location and τ = shape or multiplicative standard deviation 

Double Pareto Lognormal Distribution  

(see Reed and Jorgensen 2004) 
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and where Φ  is the cumulative density function and φ   is probability density function for 

standard normal distribution N(0,1), where α and β are parameters that control power-law 

scaling in the tails of the lognormal distribution.   

The limiting forms of the double Pareto lognormal are the left Pareto lognormal 

( ∞=α ), right Pareto lognormal distributions ( ∞=β ), and lognormal distributions 

( ∞=α , ∞=β ) with Pareto tails on only the left side, only the right side, or on neither 

side, respectively.  

A description of Reed and Jorgensen’s generative model of double Pareto lognormal size 
distribution. 

Reed and Jorgenson’s (2004) generative model begins with the Ito stochastic 

differential equation representing a geometric Brownian motion given below. 

 XdwXdtdX σµ +=  

with initial state X(0) = X0 distributed lognormally, log X0 ≈ N(ν,τ2).  After T time units 

the state X(T) is also distributed lognormally with log X(T) ≈ N(ν + (µ-σ2/2)T,τ2 + σ2T).  

The time T, at which the process is observed, is distributed with density fT(t) = λe-λt 

where λ is a constant rate.  The double Pareto lognormal distribution is generated when 

geometric Brownian motion is sampled repeatedly at time t with a negative exponential 

probability.  
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