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ABSTRACT

Comparative functional analysis of the dynamic interactions between various Betacoronavirus mutant
strains and broadly utilized target proteins such as ACE2 and CD26, is crucial for a more complete
understanding of zoonotic spillovers of viruses that cause diseases such as COVID-19. Here, we employ
machine learning to replicated sets of nanosecond scale GPU accelerated molecular dynamics simula-
tions to statistically compare and classify atom motions of these target proteins in both the presence
and absence of different endemic and emergent strains of the viral receptor binding domain (RBD) of
the S spike glycoprotein. A multi-agent classifier successfully identified functional binding dynamics
that are evolutionarily conserved from bat CoV-HKU4 to human endemic/emergent strains. Conserved
dynamics regions of ACE2 involve both the N-terminal helices, as well as a region of more transient
dynamics encompassing residues K353, Q325 and a novel motif AAQPFLL 386-92 that appears to
coordinate their dynamic interactions with the viral RBD at N501. We also demonstrate that the func-
tional evolution of Betacoronavirus zoonotic spillovers involving ACE2 interaction dynamics are likely
pre-adapted from two precise and stable binding sites involving the viral bat progenitor strain’s inter-
action with CD26 at SAMLI 291-5 and SS 333-334. Our analyses further indicate that the human
endemic strains hCoV-HKU1 and hCoV-OC43 have evolved more stable N-terminal helix interactions
through enhancement of an interfacing loop region on the viral RBD, whereas the highly transmissible
SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1) have evolved more stable viral binding via more focused
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interactions between the viral N501 and ACE2 K353 alone.

Introduction

In the worldwide COVID-19 pandemic there has been an
unprecedented wealth of high-throughput sequencing sur-
veillance of the SARS-CoV-2 virus and near real-time
sequence-based analysis of the evolution of local viral strains.
Sequence-based analysis can be highly insightful for detail-
ing the phylogenetic history of viral strains. However, with-
out expensive and time-consuming functional binding assays
it is often difficult to predict the rarer but significant muta-
tions with functional public health consequences from
among this rapid and largely neutral viral evolution. These
assays can be further supplemented by sequence-based
phylogenetic tests of selection as well as experimental and
computational structural-functional analyses. However, even
when employed together, experiments supplemented with
analyses of static data (i.e. protein sequences and structures)
are still often incapable of fully deciphering the precise
molecular functions that underlie important changes in viral
transmission. Ultimately, viral transmission is the conse-
quence of soft-matter dynamics responding to weak chem-
ical bonding interactions at many potential sites on both the
viral and putative target proteins. The unprecedented

pandemic of SARS-CoV-2 brings with it many questions
regarding the functional evolution of both emergent and
endemic Betacoronavirus strains in humans from present and
past zoonotic spillover events. It has been demonstrated in
vitro that ACE2 is the target of SARS-CoV-2 across a broad
variety of mammalian taxa (Zhao et al., 2020). With the cur-
rent surveillance of new variants like the highly transmissible
and more lethal strains of SARS-CoV-2 (B.1.1.7, B.1.351, and
P.1), the comparative molecular dynamics analysis of func-
tionally conserved binding mechanisms of viral proteins in
silico can offer new perspectives on the functional conse-
quences of viral evolution during a pandemic (Faria et al.,
2021; Rambaut et al., 2020; Tegally et al., 2021) especially
when conclusions are derived via modern machine learning
methods (Liang et al., 2021; Randhawa et al., 2020).

The SARS-CoV-2 virus belongs to the class of positive-
strand RNA viruses (genus Betacoronavirus) and is structurally
defined by a nucleocapsid interior surrounded by the spike,
membrane, and envelope proteins (Fung & Liu, 2019; Haan
et al,, 2000). Structural membrane and envelope proteins are
known to play a key role in virion assembly and budding
from infected cells, making them potential targets for
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antiviral treatments (Haan et al., 2000). One prominent pro-
tein candidate for comparative studies of the propensity for
viral transmission is the spike or S glycoprotein, which is
responsible for initial viral contact with the target host recep-
tor and subsequent entry into host cells. The spike protein
consists of two homotrimeric functional subunits: the S1 sub-
unit consisting of the viral receptor binding domain (RBD)
interacting directly with the host, and the S2 subunit which
directly fuses the virion to the host cellular membrane
(Hoffmann et al.,, 2018; Shang et al., 2020). The S1 and S2
subunits of coronaviruses are cleaved and subsequently acti-
vated by type-ll transmembrane serine proteases and the
subtilisin-like serine protease furin, the latter of which evi-
dently primes SARS-CoV-2 for cellular entry but not SARS-
CoV-1 (Follis et al., 2006; Shang et al., 2020). The boundary
between the ST and S2 subunits forms an exposed loop in
human coronaviruses SARS-CoV-2, hCoV-0C43, hCoV-HKU1,
and MERS-CoV that is not found in SARS-CoV-1 (Hoffmann et
al., 2020) and suggests a complex functional evolutionary
landscape for emergent SARS-type coronaviruses.

The spike protein of SARS-CoV-2 has been demonstrated
to directly and specifically target the human angiotensin
converting enzyme 2 (ACE2) receptor, which has a role in
the renin-angiotensin system (RAS) critical for regulating car-
diovascular and renal functions (Ou et al., 2017; 2020; Oudit
et al, 2003). ACE2 is a glycoprotein consisting of 805 amino
acid residues that is the primary target for docking and viral
entry in many coronavirus infections, including those belong-
ing to SARS-CoV and human alpha-coronavirus NL63
(Hofmann et al,, 2005). ACE2 is classified as a zinc metallo-
peptidase (carboxypeptidase) involved in cleaving a single
amino acid residue from angiotensin | (Angl) to generate
Ang1-9 (Kuba et al, 2005). In addition, ACE2 also cleaves a
single amino acid residue from angiotensin Il (Ang Il) to gen-
erate Ang1-7 (Kuba et al., 2005). ACE2 receptors reside on
the surfaces of multiple epithelial cells, with tissue distribu-
tion predominantly in the lung and gut linings, but are also
found in heart, kidney, liver and blood vessel tissues. Given
the dominant role ACE2 plays in SARS-CoV-2 viral entry,
understanding how sequence and structural variations affect
the molecular dynamics of ACE2/RBD interactions can pro-
vide information to guide the rationale design and develop-
ment of therapeutics targeting this interaction. But it is
important to note that SARS-CoV-2 also targets other human
protein receptors including several neurolipins (Cantuti-
Castelvetri et al, 2020; Daly et al. 2020) and perhaps other
known targets of other viral relatives such as the MERS-CoV
target protein CD26. Therefore, it is important to demon-
strate at a molecular level, how such promiscuity in binding
interaction is achieved by the viral RBD and how it may have
contributed to zoonotic spillovers from other species to
humans. The comparative dynamic modeling of present,
past, and potential progenitor viral strain interactions to
ACE2 and other known targets of past outbreaks like protein
CD26, can also potentially illuminate the dynamics of
molecular interactions that may facilitate zoonotic transmis-
sion to humans as well as the molecular evolution toward
emergent and endemic human viral strains.

Here, we present a systematic approach to the comparative
statistical analysis and machine learning classification of the
dynamic motions of proteins generated from all atom acceler-
ated molecular dynamics simulations. This method is subse-
quently leveraged to characterize the functionally conserved
binding signatures of viral strains on specific target proteins at
single amino acid site resolution. We employ DROIDS 4.0/
maxDemon 3.0, a multi-agent shallow learning assisted soft-
ware tool designed by our lab to statistically analyze/visualize
comparative protein dynamics and then subsequently identify
(i.e. classify) protein regions with functionally conserved
dynamics that can be discriminated by the machine learning
from more random motions caused by thermal noise (Babbitt
et al,, 2018, 2020). The software also now uses information the-
oretics to quantify the relative impact of variants on regions of
conserved dynamics and to identify amino acid site coordin-
ation (i.e. allostery) related to functionally conserved dynamic
states. We subsequently analyze molecular dynamics in models
of different Betacoronavirus strain S spike glycoprotein interac-
tions with their primary human target protein ACE2 as well as
a likely progenitor target in bats, CD26. These strains include
the endemic human strains of Betacoronavirus (hCoV-OC43 and
hCoV-HKU1), emergent strains responsible for recent SARS-like
outbreaks (i.e. SARS-CoV-1, SARS-CoV-2 and MERS-CoV), as well
as models of hypothetical interactions with the bat progenitor
strain bat CoV-HKU4. We confirm two regions of binding inter-
action on ACE2 that appear pre-adapted from two precise and
stable binding interactions of the bat progenitor strain with
CD26 (Wang et al,, 2014) and are functionally conserved across
varying evolutionary distances of the human evolving strains.
We confirm important key sites of binding interaction at the
ACE2 N-terminal helices, K353 and Q325 identified previously
by Yan et al. (Yan et al,, 2020) and Li et al. (F. Li et al., 2005; W.
Li et al., 2005). In addition, we identify a potentially new ACE2
interaction site with the viral N501 that exhibits coordinated
dynamic interplay along with K353 and Q325. This indicates
that the original outbreak strain of SARS-CoV-2 has quite a sig-
nificant degree of binding promiscuity in its interactions with
ACE2 after its zoonotic spillover into the human population.
Importantly, we demonstrate that the new variants (B.1.1.7,
B.1.351 and P.1) have lost this more promiscuous binding in
favor of a much more static and stable interaction of the
N501Y mutation with the ACE2 K353 alone. Lastly, we demon-
strate that while all Betacoronavirus spillovers both past and
present seem to rely upon conserved ACE2 binding in the
same regions, the functional evolution of the molecular bind-
ing mechanisms in the current emergent SARS-CoV-2 outbreak
is progressing quite differently within these conserved sites
when compared to the evolution of past human endemic
strains (Lubin et al., 2020).

Materials and methods
Molecular dynamic simulation—some background

A powerful tool for in silico analysis of protein-protein inter-
actions is all atom accelerated molecular dynamics (aMD)
simulation, which attempts to accurately sample the physical
trajectories of molecular structures over time via traditional



Newtonian mechanics played out over a modified potential
energy landscape that encourages conformational transition
states (Pierce et al., 2012). Compared more computationally
expensive traditional molecular dynamics (MD) simulations,
aMD is increasingly broadening the scope of inquiry by
allowing more comprehensive analysis of the rapid time
scale dynamics of protein-protein interactions. Protein struc-
tures determined via x-ray crystallography have previously
been used to provide insights into viral evolution by compar-
ing angstrom scale distances and conformational similarities.
MD simulations have already been employed to map the
hydrogen bonding topology of the SARS-CoV-2 RBD/ACE2
interaction. The goal here was to explore the merits of drug
repurposing, to characterize mutations, and to determine the
stability of binding interactions between the SARS-CoV-2
RBD and several contemporary antiviral drugs (Ahamad et
al., 2020; Ali & Vijayan, 2020; Al-Khafaji et al., 2020; Mittal et
al.,, 2020; Muralidharan et al., 2020; Wang et al.,, 2020; Yu et
al., 2020). While conventional MD and aMD simulations can
provide unprecedented resolution of protein motion over
time, interpretations based upon comparisons of single MD
trajectories are statistically problematic and difficult to com-
pare. This makes the application of MD to comparative ques-
tions regarding functional binding or impacts of mutation
quite challenging. Given recent increases in GPU processor
power, the statistical comparison of large replicates of a MD
simulations is now an available solution to this problem.
Because MD trajectories of complex structures like proteins
are inherently complex and chaotic, even if they are
adequately resampled, they do not often fit traditional model
assumptions of many parametric statistical tests. Therefore,
reliable comparisons of molecular dynamics need to further
be based upon statistical methods that can capture the
multimodal distribution space of protein motion and assign
statistical significance for divergence in dynamics without
over-reliance on the assumptions of normality in the distribu-
tion of molecular dynamics over time.

To this end, our lab has developed DROIDS 4.0, a method
and software tool designed to address these challenges in
the statistical analysis and visualization of comparative pro-
tein dynamics (Babbitt et al., 2018, 2020). DROIDS software
includes maxDemon 3.0, a machine learning algorithm/pipe-
line for detecting functionally conserved dynamics in new/
novel MD simulations after being trained upon the functional
dynamic states defined in the comparison (i.e. bound vs.
unbound, hot vs cold, before vs. after mutation etc.). DROIDS
4.0 now also includes information theoretics designed to
compare the relative impacts of genetic variation upon func-
tionally conserved dynamics, as well as identify coordination
between sites that are involving the functionally conserved
or functionally important dynamics. This method has been
successfully applied to the evolution of activation loop
dynamics relevant to cancer drug hyperactivation in the B-raf
kinase protein (Babbitt et al., 2020). Here, we have subse-
quently applied these methods to analyze hybrid models of
different strains of Betacoronavirus S spike glycoprotein inter-
actions with their primary human target protein ACE2 as well
as a likely bat progenitor strain target CD26.
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PDB structure and hybrid model preparation

Structures of the two main human SARS variants of
Betacoronavirus spike glycoprotein receptor binding domain
(RBD) bound to human ACE2 receptor protein were obtained
from the Protein Data Bank (PDB). These were SARS-CoV-1 (PDB:
6acg) (Song et al, 2018) and SARS-CoV-2 (PDB: 6m17) (Yan et
al,, 2020). Three additional hybrid models of viral RBD interaction
with ACE2 consisting of human Betacoronavirus variants MERS-
CoV (PDB: 5x5¢, and PDB 4kr0) (Yuan et al., 2017), hCoV-OC43
(PDB: 60hw) (Tortorici et al.,, 2019), and hCoV-HKU1 (PDB: 5gnb)
(Ou et al,, 2017) bound to ACE2 were generated by creating an
initial structural alignment to the SARS-CoV-2 RBD/ACE2 model
(PDB: 6m17) using UCSF Chimera’s MatchMaker superposition
tool (Pettersen et al, 2004) followed by deletion of the SARS-
CoV-2 RBD in the model and any structures outside of the
molecular dynamics modeling space defined in Figure 1(A), leav-
ing only the viral RBD and ACE2 receptor domain. The most
important features of the viral RBD-ACE2 interface are shown in
Figure 1(B). These hybrid models of ACE2 interaction included
viral receptor binding domains from MERS-CoV (PDB:5x5c and
4kr0) (Yuan et al, 2017), HCoV-OC43 (PDB: 60ohw) (Tortorici et
al, 2019), and HCoV-HKU1 (PBD: 5gnb) (Ou et al., 2017) bound
to the ACE2 protein from the SARS-CoV-1 model. Unbound
forms of the ACE2 structure were obtained by deleting the viral
structure in PDB: 6m17 and performing energy minimization for
2000 steps and 10ns of equilibration of molecular dynamics
simulation in Amber18 (Case et al, 2005; Gotz et al, 2012;
Pierce et al, 2012; Salomon-Ferrer et al, 2013) prior to setting
up production runs for the sampling regime (described below).
Loop modeling and refinement were conducted where needed
using Modeller in UCSF Chimera (Fiser et al, 2000; Sali &
Blundell, 1993). A hybrid model of the bat HKU4 betacoronavi-
rus interaction with ACE2 was similarly constructed using PDB:
4qzv (Wang et al.,, 2014), batCoV-HKU4 bound to the MERS tar-
get human CD26, as a reference for structural alignment to PDB:
6m17. Our hybrid models of the viral RBD consisted of the
largely un-glycosylated region (represented in PDB: 6m17 from
site 335-518). Only one glycan was removed using swapaa in
UCSF Chimera at ASN 343 on the viral RBD located on the
opposite side of the RBD-ACE2 interface (PDB: 6m17). Five gly-
cans on the ACE2 receptor domain were also removed, none
occurring near the binding interface (ASN 53, ASN 90, ASN 103,
ASN 322, ASN 546). The removal of these post-translational
modifications to the protein was justified in our evolutionary
comparisons due to their heterogeneity across infected popula-
tions, across species boundaries, and across evolutionary time-
scales. Single mutation models were also similarly constructed
to examine the effects of single mutations that potentially have
large effect. These models are summarized in Table 1 and are
available in a separate supplemental download file titled
PDBmodels.zip.

Mutant model construction and rationale

To generate in silico site-directed mutagenesis computations,
we created mutant models using the swapaa function in
UCSF Chimera 1.13 by first swapping amino acids using
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Figure 1. An overview of the molecular system and workflow to generate the comparative protein dynamics data sets. (A) The open conformation SARS-CoV-2
spike glycoprotein (PDB: 6vyb) interaction with its human target cell receptor, angiotensin 1 converting enzyme 2 (ACE2 PDB: 6m17). The green box in the center
shows our modeling region that bounds the subsequent molecular dynamics (MD) simulations in the study. (B) The modeling region of the viral receptor binding
domain (RBD) in red and ACE2 target protein in blue is shown along with the most relevant features of the binding interface; the N-terminal helices of ACE2 shown
in green and the three main sites of the RBD N501 site interactions shown in magenta. (C) An overview of the workflow for the MD simulation pipeline for binding
signature analysis used throughout this study. The statistical comparison of dynamics is defined by the difference in atom fluctuation or ‘dFLUX" upon ACE2 binding
by the virus, measured as the signed/symmetric KL divergence in the distribution of viral bound vs. unbound ACE2 atom fluctuations (Figure 2) collected over 200
production runs and averaged to each amino acid site on the protein backbone (i.e. N, C, Co, and O atoms). (D) RMSD plots and average RMSD (angstrom) over
time are shown for the 10 ns equilibration runs of the ACE2 model in both its SARS-CoV-2 bound and unbound states.

optimal configurations in the Dunbrack rotamer library, then
using 2000 steepest gradient descent steps of energy mini-
mization to relax the regions around the amino acid replace-
ment. Mutant models were chosen to test the predicted sites
functional role mitigating local binding between the viral
RBD and ACE2 by comparing amino acid replacements with
either very similar or very different sidechain properties. This
is summarized in Table 2. The SARS-CoV-2 N501Y mutant
model was constructed using PDB:6m17. This model of the
viral RBD only extended from site 335-518 and therefore
only included this single mutation (N501Y) from among the
seven other amino acid replacements and two deletions
found to occur on the B.1.1.7 lineage (The total set of muta-
tions defining this variant are del 69-70, del 144, N501Y,
A570D, D614G, P681H, T716l and S982A). Because of its prox-
imity to the binding interface, the N501Y mutation is
believed to be one of the most functional. In the B.1.351 and
P.1 lineages, we were able to model three mutations in the
viral RBD. These were N501Y, E484K and B417T/N.

Molecular dynamics simulation protocols

To facilitate the proper statistical confidence of the differen-
ces in rapid vibrational states in our model comparisons,
many individual graphic processing unit (GPU) aMD simula-
tions were produced to build large statistical replicate sets of

MD trajectories. aMD simulations were prepared with explicit
solvation and conducted using the particle mesh Ewald
method employed by pmemd.cuda in Amber18 (Case et al.,
2005; Darden et al., 1993; Ewald, 1921; Pierce et al, 2012;
Salomon-Ferrer et al, 2013) via the DROIDS 4.0 interface
(Detecting Relative Outlier Impacts in Dynamic Simulation)
(Babbitt et al., 2018, 2020). Simulations were run on a Linux
Mint 19 operating system mounting two Nvidia Titan Xp
graphics processors. Explicitly solvated protein systems were
prepared using tLeap (Ambertools18) using the ff14SB pro-
tein force field (Maier et al., 2015) and protonated at all avail-
able sites using pdb4amber in Ambertools18. Solvation was
generated using the Tip3P water model (Mao & Zhang, 2012)
in a 12nm octahedral water box and subsequent charge
neutralization with Na+and Cl—ions. All comparative
molecular dynamics binding analyses utilized the following
protocol. After energy minimization, heating to 300K, and
10ns equilibration, an ensemble of 200 MD production runs
each lasting 0.2ns was created for both viral bound and
unbound ACE2 receptor (Figure 1C). RMSD plots for the
10ns equilibration runs in our primary models are also
shown (Figure 1D). Each MD production run was preceded
by a single random length short spacing run selected from a
range of 0 to 0.1 ns to mitigate the effect of chaos (i.e. sensi-
tivity to initial conditions) in the driving ensemble differences
in the MD production runs. All MD was conducted using an
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Table 1. Hybrid models comparatively analyzed in this study.

Effect of ... on MD Bound structure Unbound structure PDB IDs utilized to create model Figure panel(s)
Viral binding SARS-CoV-2 RBD (wildtype and N501Y) and ACE2 ACE2 6m17 Figure 5(A)-(C)
Viral binding SARS-CoV-1 RBD and ACE2 ACE2 6acg Figure 5(D)-(E)

Viral binding hCoV-HKU1 RBD and ACE2 ACE2 5gnb and 6m17 Figure 7(D) and 4(E)
Viral binding hCoV-0C43 RBD and ACE2 ACE2 6ohw and 6m17 Figure 7(A)-(C)

Viral binding bat CoV-HKU4 and CD26 CD26 4qzv Figure 8(A)-(C)

Viral binding bat CoV-HKU4 and ACE2 ACE2 4qzv and 6m17 Figure 8(D) and 3(E)
Viral binding MERS and ACE2/CD26 CD26 5x5c and 4qzv Figure S4

Structural details, PDB IDs and relevant figures in the manuscript are also given.

Table 2. In silico targeted mutagenesis studies of the SARS-CoV-2 receptor-
spike interaction with various amino acid mutations.

In silico

Protein mutation N-terminal helix Q325 K353 386-AAQPFLL-392

Wild type D NC D D
ACE2 K353A NC NC D D
ACE2  386-AA/EE-387 D D D D
ACE2 390-FLL/EEE-392 D NC D D
ACE2  V739E NC NC D NC
ACE2  V739L D D D NC
ACE2 K408A D NC D D
RBD V185E NC NC D NC
RBD V185L D D D NC

Mutations were conducted with the swapaa command in UCSF Chimera, and
bound structures were minimized with 2000 steps of steepest descent. D
(blue) signifies dampened molecular motion, NC (yellow) indicates no signifi-
cant change in molecular motion as a result of binding, and A (orange) indi-
cates an amplification in molecular motion after RBD binding. Significance
criteria were determined as having < =—1KL divergence or less (dampened
motion during binding), or >=1KL divergence or more (amplified motion
during binding). N-terminal helix and AAQPFLL motif categorization was
determined as dampened or amplified when most of their constituent amino
acids had a KL divergence of <=—1 or > =1, respectively.

Andersen thermostat under a constant pressure of 1 atmos-
phere (Andersen, 1980). Root mean square atom fluctuations
(rmsf) and atom correlations were calculated using the atom-
icfluct and atomiccorr functions in CPPTRAJ (Roe &
Cheatham, 2013).

Comparative dynamics of bound/unbound and mutant/
wild type functional states

Computational modeling of bound and unbound protein
structure dynamics can identify both proximal and distal dif-
ferences in molecular motion resulting from the binding
interaction. In the interest of studying functional dynamics,
we focus on regions with highly dampened molecular
motion at the interface between the viral RBDs and ACE2.
Given the chaotic nature of individual molecular dynamics
simulations, ensembles on the order of hundreds of samples
are required for comparing functional states and deriving
statistically ~ significant  differences  between  them.
Furthermore, binding interactions can potentially be dis-
rupted or prevented entirely by dynamic thermal noise that
exists inherently in the system. DROIDS software employs a
relative entropy (or Kullback-Leibler or KL divergence) calcu-
lation on atom fluctuation distributions derived from large
numbers of replicates of MD trajectories to quantify the local
differences in both the magnitude and shape of the distribu-
tion of atom fluctuations in two different functional states of

a protein (NOTE: this refers to Shannon entropy in the con-
text of information theory, not entropy in the context of
thermodynamics). In this application, we compare viral
bound versus unbound dynamics of target proteins to ascer-
tain a computational signature of the local degree of damp-
ened target protein motions during viral binding (Figure 2).
DROIDS software also employs a non-parametric two sample
Kolmogorov-Smirnov statistical test of significance, generat-
ing a p-value for each amino acid site on ACE2 that indicates
whether differences in atom fluctuation are significant when
comparing the viral bound and unbound states. Because this
test is conducted over multiple sites it must be subsequently
corrected for false discovery rate via the Benjamini-Hochberg
correction (Benjamini & Hochberg, 1995). This procedure
identifies where these dampened dynamics (i.e. negative
signed/symmetric KL divergence) upon viral binding are truly
and locally significant. In our study, the dampened atom
fluctuations of target proteins ACE2 and CD26 upon binding
are indicative of molecular recognition, in the sense that
weak bonding interactions overcome baseline thermal
motion and lead to a persistent functional state.

The molecular dynamics of the viral bound and unbound
models of ACE2 were generated and statistically compared
using the DROIDS 4.0 comparative protein dynamics software
interface for Amber18 (Babbitt et al, 2018, 2020). The
signed/symmetric Kullback-Leibler (KL) divergence or relative
entropy (Kullback & Leibler, 1951) between the distributions
of atom fluctuation (i.e. root mean square fluctuation or rmsf
taken from 0.01ns time slices of total MD simulation time)
on viral bound and unbound ACE2 were computed using
DROIDS and color mapped to the protein backbone with
individual amino acid resolution to the bound structures
using a temperature scale (i.e. where red is hot or amplified
fluctuation and blue is cold or dampened fluctuation). The
rmsf value is thus

4 n
1
7*Z(ij — W)’ 4 (v — W) (Ve —wz)> (1)
) n <
i=N,C,Cay O =

1
rmsf = —

where v represents the set of XYZ atom coordinates for i
backbone atoms (C, N, O, or Ca) for a given amino acid resi-
due over j time points and w represents the average coord-
inate structure for each MD production run in a given
ensemble. The Kullback Leibler divergence (i.e. relative
entropy) or similarity between the root mean square fluctu-
ation (rmsf) of two homologous atoms moving in two
molecular dynamics simulations representing a functional
binding interaction (i.e. where 0=unbound state and
1 =viral bound state) can be described by
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Figure 2. An overview of the comparative protein dynamics analysis with DROIDS 4.0. Two comparative functional protein states are defined and subjected to
repeated sampling of molecular dynamics (MD) simulations (Figure 1C). The differences in local atom motions (dFLUX) are defined by Kullback-Leibler (KL) diver-
gences in protein backbone specific distributions in root mean square atom fluctuations (rmsf) collected over the MD sampling of each functional state. In this
study, we compare the target protein human ACE2 in both its viral bound (blue-left) and its native unbound states (red-right). The reduced energy of motion at or
near functional binding sites of the various viral strains will negatively shift the velocity of atoms creating a corresponding negative KL divergence in statistical dis-

tribution of rmsf (i.e. negative dFLUX).

i rmsfq 'msf
t; {(rmsfo*log rmsf1) + (rmsﬂ*log msfo) /T
Sops

(2)

where rmsf represents the average root mean square devi-
ation of a given atom over time. More specifically, the rmsf
is a directionless root mean square fluctuation sampled over
an ensemble of MD runs with similar time slice intervals.
Because mutational events at the protein level are typically
amino acid replacements, this calculation is more useful if
applied to resolution of single amino acids rather than single
atoms. Because only the 4 protein backbone atoms (N, Ca, C
and O) are homologous between residues, the R groups or
side chains are ignored in the calculation and equation 2 can
be applied. Since the sidechain atoms always attach to this
backbone, rmsf still indirectly samples the dynamic effect of
amino acid sidechain replacement as they are still present in
the simulation. The reference state of the protein is unbound
while the query state is viral bound. Therefore, this pairwise
comparison represents the functional impact of viral binding
on the ACE2 protein’s normal unbound motion, where it is
expected that viral contact would typically dampen the fluc-
tuation of atoms at the sites of binding to some degree. This
calculation in equation 2 is used to derive all the color maps
and KL divergence (i.e. dFLUX) values presented in the
Figures 5-8. In these maps, a negative dFLUX, indicated on
the PDB surface map in blue, represents dampened atom
fluctuation occurring due to protein-protein binding inter-
action. Multiple test-corrected two sample Kolmogorov-

KLdivergence =

Smirnov tests are used to determine the statistical signifi-
cance of local site-wise differences in the rmsf distributions
in viral bound and unbound ACE2 models. The test was
applied independently to each amino acid site. The
Benjamini-Hochberg method was used to all the adjust p-val-
ues for the false discovery rate generated from the multiple
sites of a given protein structure (Benjamini &
Hochberg, 1995).

Machine learning to detect functionally conserved
binding dynamics

We employed maxDemon 3.0 (Figure 3) for the machine
learning detection of the functionally conserved dynamics of
the binding interaction between SAR-CoV-2 and ACE2, the
viral bound and unbound ACE2 structures modeled from
PDB ID: 6m17 were each subjected to MD sampling consist-
ing of 100 production runs each for 1.0ns time, after 1ns
heating and 10ns equilibration. Each production run was
subdivided into short 50 frame time slices, from which sub-
sequent atom fluctuation and atom correlations were com-
puted using the atomicfluct and atomiccorr functions in
cpptraj (Roe & Cheatham, 2013) with a single residue mask
applied only to the 4 atom types on protein backbone (N.
Co, C, O). The atom correlations for a given amino acid site
were parsed only to include correlations to downstream sites
ati+1,i+3, i+5, and i+ 9 positions distant. The pre-classi-
fications of each time slice were simply determined from
whether they originated from the viral bound or unbound
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maxDemon 3.0 machine learning detection of functionally conserved protein dynamics
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Figure 3. Detecting functionally conserved dynamics with the maxDemon 3.0 machine learning algorithm. (A) The MD simulation sets generated above are now
the source of a pre-classified machine learning training set where class 0 and class 1 represent the binary functional states of the protein interaction (unbound vs.
bound; Figure 1C). A feature vector is constructed comprising the atom fluctuations of any given amino acid (AA) site and its correlations to motions of down-
stream sites located 1, 3, 5, and 9 AA sites distant taken at every 50 frame intervals or ‘time slices’ in the MD simulations. This rich feature vector thus captures
both the local energy on the protein backbone, as well as potential sequence-based information that coordinates specific motions with nearby AA sites. (B) A
multi-agent classifier comprised of up to seven learning methods is individually deployed on each site and a learning performance profile across all sites on the
protein is generated as the time average classification of the site-specific dynamics defined by the feature vector. Thus, successful learning of functional dynamic
features will deviate from an average classification of 0.5 on the profile. (C) This learning profile is then modeled for two evolutionary homologs (e.g. human ACE2
bound to the recent emergent strain SARS-CoV-2 and bound to bat CoV-HKU4, a potential zoonotic precursor). (D) A local canonical correlation of the learning per-
formance profiles from both homologs is taken over 20 adjacent AA sites from a sliding window moved across the protein. Significant correlation of the homolo-
gous learning profiles identifies regions (shown in gray) where the functional binding dynamics defined by the pre-classification is functionally conserved from the

time of divergence of the viral homologs.

simulation of ACE2. Thus, a feature vector for training the
machine learning model on a given site (Figure 3A) was com-
prised of the pre-classifications (0= unbound,1=viral bound),
the atom fluctuations at the given site (flux0) and the down-
stream correlations (corr1, corr3, corr5 and corr9). Two new sin-
gle MD simulations were conducted (1ns heating, 10ns
equilibration and 3 ns production) on the zoonotic progenitor
model bat CoV-HKU4 bound to human ACE2, and new runs of
SARS-CoV-2 bound to ACE2. These MD runs were subjected to
time slicing and feature pre-classification as in the training set
and then were used as validation runs for the machine learn-
ing. Because they represent the dynamic states of evolutionary
orthologs, any local similarity of learning performance shared
between them will represent functionally important binding
dynamics, defined in the training set, that has persisted and
been conserved over the time of evolutionary divergence of
the virus. A multi-agent or ‘stacked’ model of shallow learners
was individually applied to each amino acid site in the ortho-
log validation runs and learning performance profiles for each
learning method were calculated as the average classification
state over all the time slices (NOTE: a learning performance =
0.5 indicates no functional dynamics is detected at that pos-
ition). An example of the learning performance profiles for all
seven learners is shown for one of the validation runs in
Figure 3(B). The classification methods included K-nearest

neighbors, naive Bayes, linear and quadratic discriminant ana-
lysis, support vector machine with radial basis function kernel,
random forest with 500 decision trees, and adaptive gradient
boosting. All machine learning classifications are conducted in
R using the class, MASS, kernlab, randomForest, and ada pack-
ages (Breiman, 2001; Culp et al., 2016; Karatzoglou et al., 2004;
Liaw & Wiener, 2002; Venables & Ripley, 2010). Functionally
conserved viral binding dynamics between the orthologs was
captured using a canonical correlation analysis (Hardle & Simar,
2007) applied to the 14 learning profiles (i.e. 7 for each ortho-
log in red and blue; Figure 3C) using a sliding window of 30
sites and an alpha level of significance of 0.01. An example of
the local R-value and regions of significance (dark grey) are
shown in Figure 3(D). For more details, see our software publi-
cations (Babbitt et al., 2018, 2020).

Information theoretics to detect variant impact and
amino acid site coordination in conserved dynamics

After the functionally or evolutionary conserved dynamic
regions are determined, the DROIDS/maxDemon software
offers two new information theoretical calculations that can be
applied to subsequent MD simulations conducted upon gen-
etic or drug class/ligand binding variants of interest. The first
metric is an information gain or relative entropy of correlation



8 (&) P.RYNKIEWICZ ET AL.

maxDemon 3.0 calculation of variantimpacts and site coordination within functionally conserved protein dynamics
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Figure 4. Information theoretics for measuring variant impacts and functional coordination between sites. Further information theoretics applied to the predicted

binary classifications (0 or 1) of new MD runs can be used to compare relative

impacts of different variants upon the signal of the conserved dynamics and to

detect specific sites of functional coordination of conserved dynamics on the protein. (A) A relative entropy of the correlation (REC) of learning performance profiles
can be used to measure both the local and total impact of genetic variation in the viral receptor binding domain on the functionally conserved binding dynamics
of the bat/human orthologs. (B) Mutual information between the predicted binary states of learning classification (0 or 1) between any two amino acid sites, col-
lected over the time of the simulations, can be used to detect functionally relevant coordination of the binding dynamics between the two sites. The mutual infor-
mation is reported for all pairwise comparisons on the ACE2 protein as a heatmap with a scale blue/yellow/red indicating increasing coordination of functional

binding dynamics.

(REC) which can be used to compare the relative impacts of
different variants on the functionally conserved dynamics
defined in the section above (Figure 4A). This is a relative
entropy calculation comparing the R values of the canonical
correlations of each variant to that of the homologous func-
tional validation described in the section above. REC calcula-
tions are returned locally in a sliding window as a line plot for
each variants, and it is calculated globally over the whole pro-
tein backbone for each variant and returned as a bootstrapped
bar plot with a one-way ANOVA test comparing all variants.

sites

REC =) ~CCortho log

i=1

CCorrho

(3)
CCyar

A second information theoretic used is a mutual informa-
tion (MI) for all pairwise site comparisons calculated using
the learning classifications of all the time slices in a subse-
quently deployed MD simulation (Figure 4B). This calculation
captures the frequency of the co-occurrence of learning clas-
sifications at any two given sites compared to the independ-
ent frequencies of the learning classifications at the two
sites.

f(osire1 ’ Ositez )

1 ll‘:’;fnesﬁce f(Ositer, Osite2 ) log O Vo (00)
Moo ( sire1)* ( sirez) (4)
pairwise = 5 TIME f(Tsiters Vsite2)
+ D itimestice  (1site1, site2)log F(Tsiter ) #F (T5ite2 )
site site

All site-wise comparisons are presented in a heatmap
with blue/yellow/red scale that indicates the level of

co-occurrence of functional dynamic states. This provides a
useful way of quantifying the amount of site coordination in
functional dynamics which can be caused by allostery and/or
cooperative binding interactions.

Results

Characterization of the SARS-CoV-2 to ACE2 binding
signatures in the original and N501Y mutant strain

The modeled region of binding interaction consisted of the
extracellular domain region of human ACE2, and the viral
RBD specified in Figure 1(A). The main key sites of the ACE2
interface with the viral RBD are shown in Figure 1(B), with
the N-terminal helices labeled in green and the three main
sites that can potentially interact with the viral RBD N501
site are shown in magenta. The DROIDS pipeline (Babbitt et
al., 2018, 2020) used to characterize the changes in ACE2
molecular dynamics due to viral binding is summarized
Figure 1(C). More details about this can be found in the
methods section here as well as in our two software notes
cited above. All the binding models developed and analyzed
in this study are listed in Table 1. Comparisons of the
molecular dynamics of SARS-CoV-2 RBD bound ACE2 to
unbound ACE2 after long range equilibration revealed exten-
sive dampening of atom fluctuations (shown color mapped
in blue) at the ACE2 N-terminal helices as well as three
downstream sites on ACE2 focused at Q325, K353, and a
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Figure 5. DROIDS binding signature of dampened atom fluctuations in human ACE2 receptor protein upon interaction with both SARS-CoV-2 spike glycoprotein
(modeled from PDB: 6m17) and the upon interaction with the past human outbreak strain SARS-CoV-1 spike glycoprotein (modeled from PDB: 6acg). Shift in atom
fluctuations were calculated as the signed symmetric Kullback-Leibler (KL) divergence (i.e. relative entropy or dFLUX) of distributions of the root mean square time
deviations (rmsf) for residue averaged protein backbone atoms (i.e. N, Ca, C and O) for ACE2 in its spike bound (PDB: 6m17/6acg) versus unbound dynamic state
(PDB: 6m17/6acg without the viral receptor binding domain or RBD). Here we show color mapping (A, B, D) and sequence positional plotting (C, E) of dampening
of atom motion on viral RBD-protein target interface in blue for (A-C) the original strain of SARS-CoV-2 and (D, E) its predecessor, SARS-CoV-1. The sequence profile
of the KL divergence between SARS-CoV-2 viral bound and unbound ACE2 produces strong negative peaks indicating key residue binding interactions with the N-
terminal helices (white) and the N501 interactions at Q325, K353 and the AAQPLL 386-392 motif (yellow). The interactions at these sites are more moderated in

the SARS-CoV-1 interaction with the ACE2 target protein.

novel motif AAQPFLL 386-92 (Figure 5A-C). These color
mapped structures show the local site-wise mathematical
divergence of protein backbone atom fluctuation (i.e. root
mean square fluctuation averaged over N, C, Ca, and O)
when comparing viral bound ACE2 dynamics to unbound
ACE2 dynamics. They are presented for both the whole struc-
tural model (Figure 5A) and the viral binding interface with
ACE2 (Figure 5B) along with sequence-based positional plot-
ting of the signed symmetric Kullback-Leibler or KL diver-
gence (Figure 5C). The site-wise positional profiles of average
atom fluctuation in both the viral bound and unbound states
(Figure S1), as well as the multiple test-corrected statistical
significance of these KL divergences determined by a two-
sample Kolmogorov-Smirnov or KS test is also given (Figure
S2). The p-value given at each site is adjusted for the prob-
ability of false discovery that is governed by the length of
the polypeptide.

Binding interaction models of past human outbreak strain
SARS-CoV-1 in complex with ACE2 (Figure 5D and 5E) indi-
cates that the binding signature of SARS-CoV-1 and SARS-
CoV-2 is nearly identical with both having stable interaction
with N-terminal helices of ACE2 and promiscuous interac-
tions with K353 and the same novel sites Q325 and
AAQPFLL 386-92. However, the SARS-CoV-1 interactions at
these sites appear more moderate than in SARS-CoV-2.
Again, the site-wise atom fluctuation profiles and KS tests of

significance of the differences in these fluctuations are also
given (Figures S1 and S2).

Characterization of the SARS-CoV-2 to ACE2 binding
signatures in the N501Y variant strains B.1.1.7
and B.1.351

An identical characterization of the ACE2 binding signature
created by the reportedly more highly transmissible SARS-
CoV-2 B.1.1.7 (UK) variant indicated a similar yet stronger
binding profile at the N-terminal helices, with more attrac-
tion to the C helix (Figure 6A-C). The binding to the ACE2
K353 by the viral RBD Y501 was also far more stable while
the former promiscuous interactions with Q325 and
AAQPFLL 386-92 were markedly reduced (Figure 6B and 6C,
with point of the viral RBD mutation N501Y marked by the
green star in Figure 3B). In the B.1.351 (South African) vari-
ant, we also find a more stable binding pattern overall that
involves both the N-terminal helices and K353 site in ACE2
(Figure 6D and 6E). In this variant, we observed a retention
of promiscuous binding of Y501 with the K353, Q325 and
the AAQPFLL motif as well (Figure 6E). The three mutations
prevalent in the RBD of the B.1.351 and P.1 variant are
shown with a green star in Figure 6(D). These are N501Y,
E484K and K417N/T. Both variants display an extraction of
the K353 side chain away from the body of ACE2 and
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Figure 6. DROIDS binding signature of dampened atom fluctuations in human ACE2 receptor protein upon interaction with both the highly transmissible B.1.1.7
(UK) variant and the B.1.351 (South African and Brazilian) variant of SARS-CoV-2 spike glycoprotein (modeled from PDB: 6m17). Shift in atom fluctuations were cal-
culated as the signed symmetric Kullback-Leibler (KL) divergence (i.e. relative entropy or dFLUX) of distributions of the root mean square time deviations (rmsf) for
residue averaged protein backbone atoms (i.e. N, Ca, C and O) for ACE2 in its spike bound (PDB: 6m17) versus unbound dynamic state (PDB: 6m17 without the viral
receptor binding domain or RBD). Here we show color mapping (A, B, D) and sequence positional plotting (C, E) of dampening of atom motion on viral RBD-protein
target interface in blue for (A-C) the B.1.1.7 variant and (D, E) the B.1.351 variant of SARS-CoV-2. The sequence profile of the KL divergence between viral bound
and unbound ACE2 produces negative peaks indicating key residue binding interactions with the N-terminal helices (white) and the N501 interactions at Q325,
K353 and the AAQPLL 386-392 motif (yellow). The N501Y, E484K and K417N/T mutations are marked by the green stars (2B and 2D).

towards the viral RBD Y501 (Figure 6B and 6D) that is gener-
ally maintained throughout the MD simulations.

Characterization of binding signatures in human
endemic strains and past emergent outbreaks

Binding interaction models of human endemic strains hCoV-
0C43 and hCoV-HKU1 in complex with ACE2 were also ana-
lyzed identically to previous models. The interaction with the
most pathologically benign and longest co-evolved strain
hCoV-0C43 (Figure 7A-C) shows highly enhanced dampened
motion due to binding only at the N-terminal helices of
ACE2, while the interaction with hCoV-HKU1 demonstrates
this as well, but also adds moderate promiscuous interac-
tions of N501 with K353 and Q325 (Figure 7D and 7E). The
enhanced binding at the N-terminal helix is clearly associated
with the evolution of extended loop structure of the viral
RBD at this region of the interface (Figure 7A). The site-wise
atom fluctuation profiles and KS tests of significance of the
differences in these fluctuations are also given (Figures S1C,
S1D, S2C, and S2D). Binding interaction models of past
human outbreak strain MERS-CoV in complex with both
CD26 and ACE2 (Figure S4) indicate a two-touch interaction
with CD26 sites SAMLI 291-5 and SS 333-4 (Figure S4B and
S4C). The MERS-CoV/ACE2 interaction indicates a strong

interaction with the N-terminal helices and only a weak inter-
action with K353 (Figure S4D and S4E). In the MERS-CoV MD
simulations, we observe a similar maintenance of beta sheet
over the SAMLI 291-5 region in CD26, however this is par-
tially lost over the N-terminal helices when the MERS-CoV is
presented to ACE2.

We also examined the dampening of atom fluctuations in
the viral receptor binding domains (RBD’s) of SARS-CoV-2
and the two human endemic strains (Figure S5). We find that
in general, all of the viral RBD’s show stronger negative
dFLUX than their ACE2 targets, indicative of their thermo-
dynamic favoring of the target-bound state as one would
expect in a viral system. Interestingly though, while we find
that the SARS-CoV-2 RBD shows strong universal dampening
across the whole RBD (Figure S5A), the human strains dem-
onstrate the strongest change in dynamics at the enhanced
loop regions of the RBD (Figure S5B and S5C), perhaps sug-
gestive of the evolution of a disordered structure that
becomes ordered only as it binds its target. Such a mechan-
ism could obviously help the virus evade immune recogni-
tion, and we note that this has evolved in the same location
in the endemic strains as the site of the E484K mutation that
is potentially linked to the SARS-CoV-2 variants that appear
to have partially escaped the Pfizer Comirnaty vaccine
(Planas et al., 2021). Also of interest, is a common small
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Figure 7. DROIDS binding signature of dampened atom fluctuations in human ACE2 receptor proteins upon interaction with two human endemic strains hCoV-
0C43 and hCoV-HKU1 glycoprotein (modeled from PDB: 6ohw, 5gnb and 6m17). Here we show color mapping (A, B, D) and sequence positional plotting (C, E) of
dampening of atom motion on the viral RBD-protein target interface in blue for (A-C) the targeting of ACE2 by the most benign strain hCoV-0C43 and (D, E) its
less benign counterpart hCoV-HKU1. The sequence profile of the KL divergence between viral bound and unbound target proteins produces strong negative peak
indicating key residue binding interactions (C, E) with the N-terminal helices on ACE2 and (E) moderate interactions with K353 and Q325 observed only in
hCoV-HKU1.
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Figure 8. DROIDS binding signature of dampened atom fluctuations in human CD26 and ACE2 receptor proteins upon interaction with the bat progenitor strain
batCoV-HKU4 glycoprotein (modeled from PDB: 4gzv and 6m17). Here we show color mapping (A, B, D) and sequence positional plotting (C, E) of dampening of
atom motion on the viral RBD-protein target interface in blue for (A-C) its known targeting of CD26 and (A, D, E) its hypothetical targeting of ACE2. The sequence
profile of the KL divergence between viral bound and unbound target proteins produces two strong negative peaks indicating key residue binding interactions
with the (C) the SAMLI and double serine motifs (shown in yellow) on CD26 and (E) the N-terminal helices on ACE2.
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region of amplified atom fluctuation that occurs upon bind-
ing in all three RBD’s (and labelled with orange question
mark in Figure S5A).

Characterization of binding signatures of the bat
progenitor strain HKU4 with its primary target CD26
and potential zoonotic spillover target ACE2

Binding interaction models of Tylonycteris bat progenitor strain
batCoV-HKU4 RBD in complex with CD26 (its normal target)
and human ACE2 were also analyzed in the same manner as
SARS-CoV-2 (Figure 8). The bat coronavirus HKU4 demon-
strated strongly and significantly dampened molecular motion
in two precise regions of CD26, the SAMLI 291-295 motif, and
the double serine motif at SS-333-4 (Figure 8A-C). However,
upon interacting with ACE2, the bat coronavirus RBD only
dampened the atom fluctuation at a broader region of the
ACE2 N-terminal helices (Figure 8D and 8E) utilizing the same
region that interacts with the CD26 SAMLI motif. Thus, the
interaction with the ACE2 N-terminal helix appears pre-adapted
by the evolution of the interaction with SAMLI on CD26. The
site-wise atom fluctuation profiles and KS tests of significance
of the differences in these fluctuations are also given (Figure
S3). In both comparative MD simulations, we observe that the
bat CoV-HKU4 viral RBD maintains more secondary structure in
the form of anti-parallel beta sheet over the both the SAMLI
291-5 stie in CD26 and the N-terminal helices in ACE2.

Summary of the comparative protein dynamic surveys

In comparisons of molecular dynamics simulations between
four strains of human-pathogenic coronaviruses, SARS-CoV-2,
SARS-CoV-1, hCoV-HKU1, and hCoV-OC43, all four RBDs were
associated with statistically significant dampening of molecu-
lar motion in the N-terminal helices of human ACE2, indi-
cated by blue color mapping corresponding to a negative
Kullback-Leibler (KL) divergence on the ACE2 PDB structure
mapped at single amino acid resolution (Figures 2-6). With
the exceptions of bat CoV-HKU4 and hCoV-OC43, all RBDs
were also associated with dampened molecular motion of
ACE2 at residue K353. The absence of a secondary inter-
action between hCoV-OC43 and ACE2 is further supported
by multiple sequence alignment of the RBD loop region
proximal to the K353 site, where hCoV-OC43 is the only sur-
veyed strain with a polar uncharged threonine residue in
place of a small aliphatic residue (Figure S6). A significant
dampening effect is also present in two novel sites near to
K353, the Q325 and 386-AAQPFLL-392 motif, when interact-
ing with SARS-CoV-1 and SARS-CoV-2 (Figure 5), indicating a
transiently dynamic or promiscuous interaction of the same
part of the viral RBD with these three key ACE2 binding sites.
In the recent evolution of the far more transmissible variants
(Figure 6), the stabilization of RBD binding interaction with
the N-terminal helices and sites Q325, K353, and 386-
AAQPFLL-392 in ACE2 while favoring a more stable K353
interaction highlights an important molecular explanation
that linking population transmission rate with the evolution
of increased binding specificity in these new variants.

In silico mutagenesis study of hACE2 and SARS-CoV-2
bound dynamics

To confirm the relative importance of the three promiscuous
sites in the binding interaction of coronavirus RBDs to
human ACE2, a total of eight in silico targeted mutagenesis
studies were performed, on ACE2 and the viral RBD alone
(Table 2). K353A, a mutation previously identified to abolish
SARS-CoV-1 RBD interaction with ACE2, neutralized dampen-
ing of the N-terminal helices during binding with the SARS-
CoV-2 RBD (Figure S7) supporting the observation of
decreased infectivity in the mutant (W. Li et al., 2005). Within
the newly identified 386-AAQPFLL-392 motif, a mutation of
the nonpolar N-terminal double alanine to the charged polar
glutamic acid resulted in an additional strong dampening of
molecular motion in the ancestral Q325 site, with a KL diver-
gence of less than —3 between the unbound and bound
states. Mutating the C-terminal FLL residues to EEE in the
386-AAQPFLL-392 motif resulted in no overall change to the
binding characteristics between the SARS-CoV-2 RBD and
ACE2. Upon mutating V739 in ACE2 to hydrophilic glutamate,
the N-terminal helix region and 386-AAQPFLL-392 motif
showed no significant change in molecular motion between
bound and unbound states (Figure S8). This same pattern of
binding characteristics could be seen in the mutation of
V185 to glutamate in the loop region of the SARS-CoV-2
RBD, proximal to ACE2 during binding (Figure S9A). Mutating
V185 to leucine in the RBD resulted in the same binding
characteristics, resulting in a pattern of dampening in
molecular motion that was the same as seen in SARS-CoV-1
(Figure S9B). All surveyed mutations maintained significant
dampening in K353 of ACE2 during binding. The mutation of
V739 in ACE2 to leucine resulted in dampening of Q325 in
the interaction, as is seen in SARS-CoV-1, and a lack of
dampening in the AAQPFLL motif as seen in the SARS-CoV-2
wild type. However, mutating V739 in ACE2 to glutamate
resulted in pronounced dampening only at the N-terminal
helices and K353. Upon mutating polar K408 in the SARS-
CoV-2 RBD to nonpolar alanine, the Q325 interaction disap-
peared and only interactions with N-terminal helices, K353,
and 382-AAQPFLL-392 remained (Figure S10).

Machine learning-based detection of functionally
conserved ACE2 binding dynamics at sites shared
between human/bat Betacoronavirus orthologs

The maxDemon algorithm detected significant regional
canonical correlations in the machine learning classification
performance profiles of bat/human and SARS/SARS variant
orthologs, indicating regions of functionally conserved
dynamics that was recognizable from thermal noise and
shared between the molecular dynamics modeling of even
distant orthologs (Figure 9A-C). The most distant evolution-
ary comparison of bat CoV-HKU4 to SARS-CoV-2 identified
functionally conserved dynamics at 4 highly localized sites
including the region surrounding K353 (Figure 9A). The com-
parison of the bat CoV-HKU4 to human hCoV-HKU1 identi-
fied functionally conserved dynamics at 2 of the 3 N-terminal
helices, as well as two of the same highly localized regions
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Figure 9. Functionally conserved and coordinated binding dynamics. (A-C) Maps of evolutionary conserved functional binding dynamics (shown in dark gray) of
viral RBD on both ACE2 sequence and structure. Three different evolutionary distances were considered including the most distant comparison between SARS-CoV-
2 and (A) the hypothetical bat CoV-HKU4 progenitor, (B) the human endemic strain hCoV-HKU1, and (C) the UK variant, SARS-CoV-2 B.1.1.7. (D) These evolutionary
distances are also represented as the total sum of the mutational impacts on conserved dynamics. (E) The coordination of the functionally conserved binding
dynamics of ACE2 upon interactions with SARS-CoV-2 receptor binding domain is shown as a matrix with red/blue indicating high/low pairwise coordination (i.e.
mutual information in learning classifications) between sites. The inset highlights the high degree of coordination occurring between K353, Q325 and the AAQFPLL

motif in their dynamic interactions with the viral N501 site.

observed in the comparison of the bat progenitor to SARS-
CoV-2 (Figure 9B). However, the dynamics of the K353 site
was not conserved in the comparison with the human
endemic strain (i.e. the K353 dynamics observed in the emer-
gent strains was not identifiable by machine learning in the
endemic strain). In the closest evolutionary comparison of
the dynamics of SARS-CoV-2 and its B.1.1.7 variant, we
observed larger regions of functionally conserved dynamics
that includes all the regions observed in the more distant
comparisons (Figure 9C). These regions included all the N-
terminal helices, as well as the regions connecting the key
sites at K353 and Q325. The protein dynamics from position
150-200 and 280 to 308 were also significantly conserved.
The consistency of the detection algorithm across these dif-
ferent simulations, as well as the decrease in functionally
conserved dynamics with increased evolutionary distance,
very reminiscent of DNA sequence-based methods, was
highly encouraging despite the ‘black box’ nature of machine
learning approaches to complex identification problems such
as those posed when trying to compare molecular dynamic
states of protein function.

Information theoretics for comparing variants and
detecting functional coordination in ACE2 sites
of interest

The total impact (in terms of relative entropy of correlation)
of the genetic differences among the Betacoronovirus strains
upon the functionally conserved dynamics detected by the
machine learning model followed a quite predictable pattern,

with more evolutionary distant comparisons exhibiting more
total impact on dynamics (Figure 9D). The mutual informa-
tion in learning classifications between sites also captured
the predicted coordination in functional binding that we
expected to see in the dynamics at K353, Q325 and 382-
AAQPFLL-392 (Figure 9E). Not only were the functional
dynamics coordinated across amino acid sites near each of
these binding events (red regions on the diagonal of the
heatmap) but they were coordinated across these three sites
as well (at circled intersections off the diagonal). A two-
dimensional representation of the machine learning pre-clas-
sifications and discriminant learning space for the training
data at each of the three key sites and a site on the N-ter-
minal helices is also shown (Figure 10). Here, we can observe
that the K353 site clearly has the highest signal to noise ratio
regarding the functional binding of SARS-CoV-2 RBD and
human ACE2 (i.e. observable in the contours and stronger
point separation of the time-sliced dynamics of the viral
bound and unbound states).

A model of the functional evolution of ACE2 binding
interactions during zoonotic spillover

Based on our overall results comparing regions of function-
ally conserved dampened molecular motion in ACE2 and
CD26 target proteins across zoonotic, emergent, and
endemic Betacoronavirus strains, we propose a model of pro-
tein interaction for coronavirus RBD evolution and human
specificity highlighting the role of the two distinct touch
points between the viral RBD and the human target proteins
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Figure 10. Feature vector and learning classification spaces for key binding sites on ACE2. The machine learning training data and the optimized learning classifica-
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ACE2. The colors of the background indicate the probability state of the machine learning classification model after training on the data points. The average correct
classification (i.e. machine learning performance) for the specified amin acid is shown in the lower right corner of each plot.

(Figure 11A). The black arrowhead in the model signifies a
relatively conserved region of sustained interaction between
the coronavirus RBDs and the N-terminal helix region of
ACE2. The red arrowhead indicates more promiscuous inter-
actions with Q325 and K353, present individually across
SARS-CoV-2 as well as SARS-CoV-1, MERS, and HKU1, as well
as the newly identified 386-AAQPFLL-392 motif prominent
mainly in ACE2 interactions with the wild-type SARS-type
spike protein RBD. This two-touch model highlights a com-
mon interaction point of the viral RBD with the N-terminal
helices of ACE2 that is conserved in all known strains of
potentially human-interacting Betacoronavirus, demonstrated
by the universal dampening of ACE2 molecular motions
upon viral binding. This interaction corresponds structurally
with the viral bat progenitor strain RBD interaction with the
SAMLI 291-5 site in CD26. The second and more complex
dynamic touch point in the model involves the contact of
the viral RBD N501 with the previously described contact
sites K353 and Q325, as well as the nearby novel site of
interaction at the AAQPFLL motif. This second interaction
corresponds with a strong and precise binding interaction of
the viral bat progenitor strain RBD with SS 333-4 in CD26.
This promiscuous interaction site seems considerably appar-
ent in the two pathogenic SARS-type strains, suggesting that
the binding interactions during zoonotic spillover may follow
a common functional evolutionary path in SARS-type emer-
gent outbreaks (Figure 11B), perhaps utilizing a preadapted

interactions with the SAMLI and SS motifs in CD26 in bat res-
ervoir populations to establish loose and promiscuous bind-
ing with the ACE2 N-terminal helices and the loop regions
near the beta sheet turn at K353. In SARS-CoV-2, this has
most recently evolved to higher specificity for ACE2 particu-
larly through the strengthening of the ACE2 K353 and the N-
terminal interactions. This appears quite different from the
evolutionary path of the binding interactions in human
endemic strains like hCoV-OC43 (Figure 11B), where an inser-
tion event appears to have enhanced the RBD loop struc-
tures near the N-terminal helices of ACE2 and subsequently
strengthen binding interactions in this region.

Discussion

Here we conducted machine-learning assisted statistical com-
parisons of hundreds of replicate sets of nanosecond scale
GPU accelerated molecular dynamics simulations on viral
bound and unbound target proteins to survey the evolution-
arily conserved functional similarity, as well as the compara-
tive functional differences between various emergent,
endemic, and potentially zoonotic Betacoronavirus strains in
humans. We present evidence that strongly suggests a com-
mon route of functional molecular evolution occurring at the
binding interface of the viral receptor binding domain and
their primary protein targets ACE2 and CD26. We propose a
two-touch contact model of viral evolution that may be
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evolving similarly during SARS-type Betacoronavirus zoonotic
spillover events from either Tylonycteris (bamboo bat) or
Rhinolophus (horseshoe bat) to human populations. We pre-
sent computationally derived signatures of receptor binding
domain interactions with target human proteins, in the bat
progenitor strain batCoV-HKU4 and five human strains, the
emergent MERS-CoV, SARS-CoV-1 and SARS-CoV-2 strains
and the endemic hCoV-OC43 and hCoV-HKU1 strains. We use
a novel machine-learning based approach to detect function-
ally conserved ACE2 binding dynamics among viral ortholog
comparisons. Our studies of the biophysics of viral binding
at single amino acid site resolution demonstrate that the cor-
onavirus spike glycoprotein receptor binding domain (RBD)
has a strong, static, and well-defined binding interaction
occurring in two distinct regions, or ‘touch points’ of human
CD26 and also the CD26 ortholog in bats as well. In its inter-
actions with the human ACE2 target protein, the spike glyco-
protein RBD appears pre-adapted through its binding
interactions involving two of these sites on CD26 (SAMLI
291-5 and SS 333-4) to allow broad and somewhat promiscu-
ous binding interactions with the N-terminal helical region of
ACE2 as well as regions connecting K353, Q325 and 382-
AAQPFLL-392.

We find that the functional binding dynamics of these
two pre-adapted contact regions on ACE2 have been con-
served differently between the bat progenitor and the
human endemic and recent SARS-type emergent strains. The
human endemic strains hCoV-OC43 and hCoV-HKU1 appear
to have evolved towards enhanced stability on ACE2 via
strong broad interaction with the ACE2 N-terminal helices
that is facilitated by the evolution of enhanced loop struc-
tures on the viral RBD that markedly stabilized upon binding
the interface with N-terminal helices on ACE2. The slightly
more pathogenic human strain hCoV-HKU1 also shows
shares this feature with hCoV-OC43, but still also shows

weak interactions with K353. Thus, while the binding of the
ACE2 N-terminal helices appears common to all of our
Betacoronavirus strain dynamics models, this interaction
appears especially conserved in the functional evolution of
past endemic human strains from the bat progenitor.
However, in the more emergent SARS-type strains, we
observe evolutionary conserved binding dynamics mainly at
and near the K353 site on ACE2, where we also observe a
high degree of mutual information (i.e. coordination of func-
tional dynamic states) between this site and Q325 and 382-
AAQPFLL-392. This transient viral RBD interaction with mul-
tiple sites on ACE2 in emergent SARS-type strains suggests
that the interaction with K353 reported by (Yan et al.,, 2020),
is not as stable in the early evolution of SARS-CoV-2 binding
as their initial structural analysis might imply. We hypothe-
size that the binding interactions at these three sites are per-
haps more evolvable in SARS-type strains than the
interactions at the N-terminal helices. The recent appearance
of the N501Y mutation in the highly transmissible variants of
SARS-CoV-2 appears to further support the functional evolu-
tion of more stable binding at this same location on the
ACE2 target protein. When we characterized the effect of the
mutation on the binding dynamics in this region, we found
that this one mutation has greatly stabilized the Y501 inter-
action with the ACE2 K353 site, also now reported by (Ali et
al., 2021), and has reduced the transient and promiscuous
interactions with the other two flanking binding sites we
have described here. Thus, the stabilization the dynamics at
of this point of contact has enhanced the binding, and by
extension perhaps also the transmissibility of the SARS-CoV-2
virus, all the while bringing it much closer to the molecular
binding profile of the bat progenitor strain batCoV-HKU4
with its primary target protein, CD26. It has been recently
hypothesized and demonstrated that promiscuity in protein-
protein interactions is related to a lack of protein stability



16 (&) P. RYNKIEWICZ ET AL.

(Cohen-Khait et al., 2017) and it would also appear, through
our work on this system, that a lack of protein stability may
also be related to the molecular facilitation of zoonotic spill-
overs of certain viral pathogens as well. We believe the com-
plex dynamic interaction at the second ‘slippery or transient
touch point’ in our two-touch model may represent the
molecular manifestation of a lack of binding specificity that
may characterize many viral binding interactions during
emergent SARS-type outbreaks when the co-evolution
between a viral binding domain and a potential host target
receptor is still historically very recent. Our simulations sug-
gest several alternative paths of viral evolution in emergent
versus endemic strains that have both favored a more pre-
cise and specific targeting of human ACE2, which may also
be associated with enhanced transmissibility as well.

While our approach offers the considerable advantage of
combining a comparative statistical method and a physics-
based modeling approach towards addressing functional
molecular evolution, it is not without some pitfalls. Some
potential limitations of MD simulations as a probative
method for functional molecular evolution are its many
implicit simplifying computational assumptions, its complex
and inherently stochastic nature, and high computational
expense which can limit its conformational sampling.
Specifically, the sampling of even the accelerated MD
method employed here can have significant runtime limita-
tions, and even on modern graphics cards our simulations
can typically have a cumulative runtime of several weeks to
generate the proper statistical replication to compare phys-
ical time frames of only several hundreds of nanoseconds. In
addition, MD simulations always involve some simplification
of the biophysics within the system being studied as it can
ignore some aspects of atomic charge regulation, bond
motions in the solvent, charge screening during interaction,
and other macromolecular crowding effects. Insight into
long-term microsecond to millisecond dynamics in large
explicit solvent systems are still limited by currently available
hardware, even when advanced algorithms for accelerating
MD simulations are used. Glycosylation, mannosylation, sialy-
lation and other potential post-translational modifications of
the viral bound ACE2 model is another aspect of coronavirus
spike protein biology that is not fully captured by our MD
simulations. While this is mainly due to lack of glycosylation
in the functional binding interface of most of our key start-
ing structures, we also acknowledge that there are recent
studies demonstrating the functional importance of these
modifications and the effect they have upon binding and
other interactions between spike glycoprotein and ACE2
(Allen et al., 2021; Sanda et al., 2021; Yang et al., 2020).
However, given the potential heterogeneity of post-transla-
tional modifications within infected populations and across
species boundaries, and the fact that most mammalian pro-
tein structures are expressed out of bacterial systems that
lack some and/or all the enzymes responsible for these post-
translational modifications, we have no grounded way of
investigating their evolution in relation to functional binding
at this time. Recent studies have demonstrated considerable
impermanence of glycosylation in the SARS-CoV-2 spike

glycoprotein (Sanda et al, 2021; Zhang et al, 2021). And
while glycosylation probably does affect the flexibility of
ACE2 (Barros et al., 2021), we would argue that while these
post-translational modifications can have immediate impacts
on dynamics, their probable lack of genetic heritability justi-
fies our decision to omit their potential role in long term
viral evolution outside of specific outbreaks. However, their
potential role in both short term and long term viral evolu-
tion should be investigated in future studies when more reli-
able information regarding the heterogeneity of these
chemical modifications becomes available.

Despite these limitations, we conclude that our identifica-
tion of additional key residues in the binding interaction
between the SARS-CoV-2 RBD and human ACE2 receptor, as
well as our evolutionary exploration of the two-touch model
of RBD evolution provide a conceptual framework for future
functional mutagenesis studies of this system. This will be
especially important for understanding the functional evolu-
tion of transmissibility in new SARS-CoV-2 variants, recently
responsible for the large community lockdowns during the
COVID-19 pandemic and recently implicated in reduced vac-
cine efficacy (Planas et al., 2021) as well as possible reduction
in neutralizing antibody efficacy caused by changes in the
molecular dynamics of prefusion conformations of the spike
glycoprotein (Corbett et al., 2020; Melero et al., 2020). Future
surveys of Betacoronavirus circulating in past, present, and
future human populations as well as molecular and clinical
investigations of SARS-CoV-2 infection will likely continue to
be further informed by the model interpretation of binding
interaction that we present in this study. In future studies of
molecular models derived from potential zoonotic corona-
virus strains, our functional evolutionary binding study can
lend greater interpretability to observations regarding evolu-
tionary diversity in coronaviruses infecting reservoir species
like bats, birds, and small mammals. Finally, as recent work
has called out the importance of specific molecular motions
in forming novel therapeutic targets for intervention in
emerging zoonotic spillover events (Pierri, 2020), tools for
highlighting functionally conserved dynamics of conform-
ational alterations of the interaction host and pathogen pro-
teins will prove a valuable addition to the arsenal of
modeling approaches available for drug development.
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