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ABSTRACT Traditional informatics in comparative genomics work only with static representations of biomolecules (i.e.,
sequence and structure), thereby ignoring the molecular dynamics (MD) of proteins that define function in the cell. A comparative
approach applied to MD would connect this very short timescale process, defined in femtoseconds, to one of the longest in the
universe: molecular evolution measured in millions of years. Here, we leverage advances in graphics-processing-unit-acceler-
ated MD simulation software to develop a comparative method of MD analysis and visualization that can be applied to any two
homologous Protein Data Bank structures. Our open-source pipeline, DROIDS (Detecting Relative Outlier Impacts in Dynamic
Simulations), works in conjunction with existing molecular modeling software to convert any Linux gaming personal computer
into a ‘‘comparative computational microscope’’ for observing the biophysical effects of mutations and other chemical changes
in proteins. DROIDS implements structural alignment and Benjamini-Hochberg-corrected Kolmogorov-Smirnov statistics to
compare nanosecond-scale atom bond fluctuations on the protein backbone, color mapping the significant differences identified
in protein MD with single-amino-acid resolution. DROIDS is simple to use, incorporating graphical user interface control for
Amber16 MD simulations, cpptraj analysis, and the final statistical and visual representations in R graphics and UCSF Chimera.
We demonstrate that DROIDS can be utilized to visually investigate molecular evolution and disease-related functional changes
in MD due to genetic mutation and epigenetic modification. DROIDS can also be used to potentially investigate binding interac-
tions of pharmaceuticals, toxins, or other biomolecules in a functional evolutionary context as well.
INTRODUCTION
In recent decades, many advances in our understanding of
biology at the level of the molecular genotype have been
facilitated by biologists working in the fields of molecular
evolution and comparative genomics. Most comparative
methods in bioinformatics rely primarily upon symbolic
character representation of nucleic acid and/or amino acid
sequences or else static three-dimensional models of molec-
ular structure. Subsequently, the many dynamic aspects of
biomolecules are explicitly ignored in comparative geno-
mics, often with the tacit assumption that the most important
‘‘information’’ regarding function and evolution can be
abstracted from the physical details of molecular behavior
itself (1–3). Currently, researchers in genomics and struc-
tural biology have spent enormous effort to more efficiently
generate, process, and analyze sequence and structural data
with a variety of heuristic, probabilistic, and now machine-
learning-based methods. However, we currently lack statis-
tical methods and user-friendly comparative bioinformatics
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tools that biologists can apply to biomolecular dynamics
despite a wealth of homologous structures from the Protein
Data Bank (PDB) that could be data mined for this purpose.
This leaves the comparative impact of genetic mutation,
epigenetic modification, and binding interaction largely un-
known at the level of protein dynamics.

The rapid expansion of entries in the PDB as well as the
rapid development of computer programs accelerated by
graphics processing units (GPUs) (4,5) to simulate the
molecular dynamics on PDB structures now provide an
opening to develop theoretically sound comparative
methods and tools that can enable both functional and
evolutionary comparisons rooted in how macromolecular
polymers dynamically move. We can also examine how
they ultimately self-organize to form functionally stable
structures and cross-interact with each other to control mo-
lecular processes in the cell. A computationally expensive
but direct way of studying molecular interaction is provided
by the field of molecular dynamics (MD) simulation. The
technique of MD simulation often begins with a molecular
structure file (.pdb) and an empirically parameterized force
field representing atom interactions between fixed-point
charges or polarizable masses that treat covalent chemical
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bond stretching, torsion, and angular motion as simple har-
monic functions. Solvent can be added either explicitly or
implicitly, then initial velocities are applied to individual
atoms randomly according to the Boltzmann distribution
for a given temperature, and finally Newtonian mechanics
are numerically approximated over very short femto-
second-scale time steps because of the rapid vibration of
chemical bonds. Energy transfer via nonbonded interactions
between molecules in the simulation is typically approxi-
mated using Coulomb’s law, sometimes with a distance
constraint to minimize calculations in very large systems.
Despite a relatively enormous computational expense, if
set up carefully and sampled for a long enough time frame
on stably equilibrated systems, current GPU technology
applied to MD simulation potentially provides tremendous
accuracy and resolution for the biophysical behaviors of
protein-based systems (4,5). In the last several years, the
demand from the personal computer gaming community
for GPUs with thousands of computing cores now allows
desktop computers to run enough MD simulations to
adequately sample transition states of long-term molecular
biological processes such as protein folding that play out
at nanosecond-to-microsecond timescales (6). A less
explored potential application of this new technology is
the sampling of mutational space through the lens of
comparative protein dynamics. This is enabled by the recent
discovery that in very-short-timescale dynamics, the atom
fluctuations that play out over picosecond timescales are
also intrinsic drivers of longer-timescale functional dy-
namics through general hierarchical properties of protein
energy landscapes ((7,8); Fig. 1 A). Theoretically, this asso-
ciation between short- and long-timescale protein dynamics
could allow for the biologically meaningful comparative
statistical analysis of two ‘‘sets’’ of multiple short-timescale
runs (picoseconds to nanoseconds) representing differences
between homologous dynamic conditions related to long-
timescale protein functioning (Fig. 1, B and C). Luckily,
this magnitude and scale of computation is currently within
the performance capability of MD simulation on modern
GPUs. Software enabling comparative protein dynamics
could be particularly useful for investigating the molecular
evolution of protein stability, disease malfunction, and
gene regulatory binding interaction.

We introduce DROIDS 1.20, a graphical user interface
(GUI) pipeline for Amber16 MD simulations and subse-
quent statistical analyses and visual representations capable
of directly addressing functional and evolutionary changes
in MD (digital object identifier: 10.5281/zenodo.1001755).
It is available at https://github.com/gbabbitt/DROIDS-1.0.
DROIDS (Detecting Relative Outlier Impacts in Dynamic
Simulations) implements multiple-test-corrected Kolmo-
gorov-Smirnov statistics at single-amino-acid resolution
along the polypeptide backbone to identify significant
functional differences in protein dynamics due to differ-
ences in nonsynonymous genetic mutation, epigenetic co-
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valent modifications, or chemical binding interactions
affected by the presence or absence of different natural
or drug ligands or toxins. The DROIDS statistics are
applied to samples of atom fluctuation (i.e., the cpptraj
atom fluctuation (FLUX) calculation) to address local or
global effects on thermodynamic stability and conforma-
tional rigidity that may affect longer-timescale functioning
of proteins. The DROIDS software combines GPU-acceler-
ated Amber16 and AmberTools17 MD simulation software
by utilizing the pmemd.cuda executable (4,5), cpptraj
program for vector trajectory analysis (9), R software for
statistical calculation and graphics, and the UCSF Chimera
extensible molecular modeling software for structural
comparison and visualization (10) to create a seamless
GUI-based experience that allows users to identify signifi-
cant differences in how proteins move. DROIDS automates
the repeated random sampling of MD to allow for proper
statistical comparison of two sets of simulations run on
any pair of homologous queries and reference PDB files
that can be superimposed and structurally aligned with a
high degree of overlap. DROIDS then produces molecular
visualizations in which significant changes in MD are color
mapped to static images or movies according to quantita-
tive differences (i.e., delta values in angstroms for atom
fluctuations, or ‘‘dFLUX’’), and it also indicates statisti-
cally significant p-values of the Kolmogorov-Smirnov
(KS) test colored against gray-scaled nonsignificant values
and nonhomologous regions.
MATERIALS AND METHODS

The DROIDS 1.0 pipeline

The DROIDS pipeline is run as a series of three perl-tk scripts that are

initiated at the Linux command line and controlled via a pop-up GUI

interface. The Quick Start Guide walks the user through the steps shown

schematically in Fig. 1 C. We also offer a more detailed user manual and

installation guide with the download from GitHub. The user starts the

pipeline by placing the two PDB files to be compared in the

DROIDS main folder, opening a terminal, and typing ‘‘perl GUI_START_

DROIDS.pl.’’ This GUI interface is designed to control and run all stages

of the MD simulations of both the query and reference PDB structures that

will be needed for later DROIDS analysis. The start menu begins with the

construction of a structure-based sequence alignment in Chimera. This is

followed by typical teLeap setup of the PDB files and a single energy

minimization, heating, and equilibration run on each PDB file. These sin-

gle MD runs are followed by N number of sampling runs, with N specified

by the user and starting at the end of equilibration. For adequate estima-

tion of average dFLUX, we generally recommend 50 or more sampling

runs on each protein conducted at 0.5 ns per sample (see Fig. S1 for the

effect of sample size on dFLUX estimation and Table S1 for observed

false discovery rates in null comparisons on ubiquitin). Random spacer

runs precede each sampling run to minimize the impact of initial condi-

tions on the MD sampling. This is important, as it is well known that

MD simulations are often chaotic in their behavior, and the randomization

of the start of sampling during each run helps to average out any effects of

chaotic dynamics on the statistical comparisons to be made. Afterwards, a

GUI for vector trajectory analysis will pop up. This leads the user through

typical cpptraj commands to collect atom fluctuation for each sampling

https://github.com/gbabbitt/DROIDS-1.0


FIGURE 1 (A) A hypothetical representation of

the effect of protein mutation on the thermody-

namic landscape of a protein (adapted from (8)).

In the inset image, the mutation destabilizes the

original thermodynamic landscape, shown in

orange, to the state shown in blue. Under functional

conservation of the protein function, many muta-

tions will likely have little effect on the free-energy

landscape, whereas only a very few may have more

devastating impacts, as shown here. (B) dFLUX

can be visualized here as the hypothetical differ-

ences in atom fluctuation (blue circles) on two

homologous protein chains. In the DROIDS color

mapping, dFLUX is averaged over the four

backbone atoms of each amino acid. Global

dFLUX for the whole chain is simply the sum of

absolute dFLUX over the length of the polypeptide

chain. (C) A schematic representation of DROIDS

comparative molecular dynamic analysis software

is shown. DROIDS 1.2 is a software tool for multi-

ple-test-corrected pairwise comparison of molecu-

lar dynamics of two comparable PDB structures

at the amino acid level. The three main phases of

analysis include MD sampling runs and vector

trajectory analysis, statistical comparison via

multiple-test-corrected KS tests, and visualization

results on static and moving images. RMSF, root

mean-square fluctuation.
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run. Lastly, this GUI leads the user through data preparation for later

DROIDS statistical analysis. In this step, the user is offered a choice of

‘‘strict’’ versus ‘‘loose’’ homology (which determines the amino acids to

which the DROIDS statistics will be applied). See the user manual for

more details regarding this step. The third and final GUI allows users to

run the statistical comparisons and choose the method of multiple-test

correction (11), followed by color and graphics options to be applied to

the static and moving images of the reference PDB. The statistical test

is a KS test applied specifically to the collective backbone MD of each

amino acid residue (i.e., atoms N, CA, C, and O masked during cpptraj).

Note that many more specific details of the MD can be modified by the

user by editing the lines in the perl scripts that write the control files

within GUI_START_DROIDS.pl.
MD simulation protocols for case examples

All MD simulations were tested on an Intel Xeon E5 board (Intel, Santa

Clara, CA) mounting a GTX Titan X GPUMaxwell accelerator or a smaller

graphics workstation mounting a pair of GTX 1080 Founder’s Edition GPU

Pascal accelerators (Nvidia, Santa Clara, CA) running pmemd.cuda and

cpptraj released with Amber16 and AmberTools17 (4,5,9). The force field

we chose was protein.ff14SB. Each structure underwent initial energy mini-

mization. The structures were then heated from 100 to 300 K under

Langevin dynamics over 0.5 ns. The production MDs for most of the

case examples we posted to YouTube were performed under the Hawkins,

Cramer, and Truhlar pairwise Generalized Born model for implicit

solvation (12); 50 sampling simulation runs lasted for 0.5 ns (0.5E9 steps),
Biophysical Journal 114, 1009–1017, March 13, 2018 1011



FIGURE 2 (A) Comparison of global dFLUX distribution (entire protein) across different mutation and epimutation categories in all DROIDS analyses

listed in Table 1. (B) Here, a comparison is shown of global dFLUX distribution in the nucleotide-binding domain of CFTR caused by changes at the site of

cystic fibrosis mutation (DF508) and orthologous changes in CFTR that have occurred since the divergence of vertebrates (human-zebrafish). (C) Local

dFLUX only at sites of mutations is also shown for contrast.
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with an integration time step of 2.0 fs and an infinite cutoff. Before sam-

pling the MD on each structure, we equilibrated for 10 ns. After equilibra-

tion, 50 sampling runs at 0.5 ns each were taken using a random starting

time to average out any small differences caused by the sensitivity of

MD to initial conditions set at the end of the equilibration stage. A Langevin

dynamics thermostat was used to control for our constant temperature sim-

ulations (300 K) at a collision frequency of 10 ps�1. Bond length constraints

were applied to all hydrogen bonds using the SHAKE algorithm. Center-of-

mass motion was removed every 1000 steps, and slowly varying forces were

evaluated every two steps. The minimal distance calculated for the effective

Born radii was 25.0 Å. Simulation data were output every 500 steps to a bi-

nary NetCDF trajectory for cpptraj analysis.
RESULTS AND DISCUSSION

A summary of dFLUX values sampled across various types
of mutation and epimutation is shown in Fig. 2. Summary
details of each protein comparison conducted here are also
presented in Table 1. DROIDS clearly demonstrates that
most orthologous and paralogous evolutionary changes in
functionally conserved proteins have little effect on MD
(Fig. 2 A). Most changes in dynamics observed under pur-
ifying selection are similar in magnitude to differences in
dynamics observed across separate runs on the same protein.
Adaptive genetic changes occurring under a regime of
1012 Biophysical Journal 114, 1009–1017, March 13, 2018
positive selection promoting thermostability demonstrate
consistent dampening of atom fluctuation of roughly the
same magnitude as that observed for disulfide bridging in
natural signaling proteins and bioengineered enzymes.
Most interestingly, the several disease-related mutations
we have initially analyzed with DROIDS can be observed
to globally destabilize proteins (i.e., increase atom fluctua-
tion), confirming recent general hypotheses about the role
of general biophysical malfunction in disease (13,14). In
our modest sampling of a few disease mutations, we found
this global destabilization is particularly notable in the case
of the impact of the DF508 mutation and other single muta-
tions engineered at this site on the CFTR protein, as it is the
cause of over 90% of cases of human cystic fibrosis (15,16).
Mutations at this site have a much larger singular effect on
both global and local protein dynamics even when
compared to the cumulative effect of many orthologous
changes that have arisen since the divergence of vertebrates
(Fig. 2, B and C). We also observed a global destabilization
of the B-RAF kinase caused by the V600E mutation (17),
which is associated with roughly 50% of human melanoma
cases (see Table 1). Together, these results demonstrate a
potential for DROIDS to verify the underlying molecular



TABLE 1 Comparative Protein Dynamics Analyses Conducted with DROIDS

Category Protein PDB ID Species

Sequence

Similarity

(%)

Grantham

Distance

(Average)

Dynamic

Similarity

(Average dFLUX)

Adaptive ortholog p450 cytochrome 1f4t-1phd Sulfolobus solfactaricus 15.95 79.93 0.28

Pseudomonas putida

Adaptive ortholog p450 cytochrome 1n97-1phd Thermus thermophilus 10.88 82.10 0.25

P. putida

Adaptive ortholog p450 cytochrome 1t2b-1phd Citrobacter braakii 23.68 76.63 0.27

P. putida

Adaptive ortholog DNA polymerase 4n56-1kfd Thermus aquaticus 29.1 77.86 0.89

E. coli

Functional ortholog alcohol dehydrogenase 1htb-6adh Homo sapiens 86.91 66.47 0.02

Equus caballus

Functional ortholog NBD1 domain of CFTR 1xf9-2pze Mus musculus 83.12 52.58 0.29

H. sapiens

Functional ortholog L-Dap aminotransferase 3ei7-3qgu Arabidopsis thaliana

Chalmydomonas reinhardtii

Functional ortholog ATP-free CFTR 5uar-5uak Danio rerio 68.61 53.26 0.04

H. sapiens

Functional paralog lyase (DCoH2 and DCoH) 1ru0-1dch M. musculus 66.68 52.10 0.02

Rattus norvegicus

Functional paralog serine proteases (Trypsin and

pancreatic elastase)

2ptn-3est Bos taurus 35.43 75.96 0.06

Sus scrofa

Functional paralog interferon regulatory factors

(IRF-5 and IRF-3)

3dsh-1j2f H. sapiens 23.90 84.27 0.29

nsSNV disease V599E mutant of B-RAF

kinase (melanoma)

1uwj-1uwh H. sapiens 99.29 113.50 0.73

nsSNV disease F508R disease and F508S nondisease

mutant of NBD1 domain of CFTR

(cystic fibrosis)

1xfa-1xf9 H. sapiens 99.65 110.00 1.28

nsSNV disease F508R disease and wild-type NBD1

domain of CFTR (cystic fibrosis)

1xfa-2pze H. sapiens 93.12 51.05 1.54

nsSNV disease DF508 disease and wild-type NBD1

domain of CFTR (cystic fibrosis)

2pzf-2pze H. sapiens 99.57 NA 0.51

nsSNV disease Htt36Q3H and Htt17Q

(Huntington’s disease)

4fec-3iou H. sapiens 97.37 76.27 0.05

nsSNV disease PrP226 and human prion protein

(prion-based amyloid disease)

5l6r-1qlx H. sapiens 96.24 99.75 0.09

Null comparison collagen 1bkv H. sapiens 100 0% 0.12

Null comparison collagen-like peptide 1cag H. sapiens 100 0% 0.17

Null comparison DNA polymerase (Klenow fragment) 1kfd E. coli 100 0% 0.13

Null comparison T4 lysozyme 1lyd E. virus T4 100 0% 0.15

Null comparison ubiquitin 1ubq H. sapiens 100 0% 0.04

Null comparison pancreatic elastase 3est S. scrofa 100 0% 0.06

Phosphorylation phosphorylated IRF-3 and

dephosphorylated IRF-3

3a77-1j2f H. sapiens 98.68 0% 0.02

Phosphorylation phosphorylated DesR (inactive)

and dephosphorylated DesR (active)

4le1-4le2 Bacillus subtilis 100 0% 0.06

Disulfide (S-S) proinsulin (with and without three

disulfide bonds)

2kqp H. sapiens 100 0% 0.63

Disulfide (S-S) T4 lysozyme with and without a

bioengineered disulfide bond)

1l35-1lyd E. virus T4 100 0% 0.08 (0.47) at

site of S-S

The impacts of genetic mutation on each protein are compared at the levels of amino acid sequence and chemical distance, as well as MD. This data is sum-

marized in Figure 2. ID, identifier; NA, not applicable.
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mechanics of regions of low mutational tolerance in at least
some proteins. Despite being much faster than MD, current
sequence- and structure-based machine learning classifiers
of mutational tolerance do not currently provide any bio-
physical details as to the root cause of low mutational
tolerances involved in any disease. DROIDS analysis
might provide detailed additional biophysical information
regarding low mutational tolerance of some proteins identi-
fied in genomic scans using current sequence-based
methods (e.g., SIFT, PolyPhen, or MegaMD (18–21)).

In addition to this general summary (Fig. 2; Table 1), we
provide images from several case examples below that
highlight the color-mapped visualization of DROIDS.
Here, one can see some of the options for how movies
Biophysical Journal 114, 1009–1017, March 13, 2018 1013



FIGURE 3 A null comparison of molecular dynamics on a small protein (PDB: 1ubq – 1ubq). (A) The profiles in average FLUX as a function of position

are nearly identical. (B) The differences (i.e., dFLUX) that are colored as a function of amino acid type are (C) almost entirely nonsignificant except at the

terminal end of the protein. (D) Results without correction for false discovery rate are also shown for comparison. (E) dFLUX and (F) p-values of the KS tests

are shown color mapped to PDB: 1ubq. ns, not significant.
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rendered with DROIDS can actually look. In the remaining
figures, we show some image output from a few selected
MD runs in Table 1. Many of the others are available for
viewing on our YouTube channel at https://www.youtube.
com/channel/UCJTBqGq01pBCMDQikn566Kw. The first
example is a simple null comparison on ubiquitin (Fig. 3),
a very small and stable protein. The difference in the MD
profile for atom fluctuation was very small, indicating repro-
ducibility of the average FLUX values in the MD profile
(Fig. 3, A, B, and E). This was essentially implemented as
a ‘‘sanity check’’ for the method of multiple-test correction
(i.e., Benjamini-Hochberg method), and it was deemed
effective in eliminating most of the false-positive results
from the comparison most of the time. Table S1 shows a
more detailed analysis of false discovery rates at various set-
tings and sampling regimes. The correction eliminated all
false-positive results except one significant p-value at the
C-terminal end of the protein (Fig. 3, C, D, and F). We sus-
pect that the MD here might actually be significantly
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different, as the C-terminal end of ubiquitin, which was
used to ‘‘tag’’ many other proteins for proteolysis, is rela-
tively disordered and does not reside in a relatively stable
potential energy state.

For our next example, we conducted a series of compar-
isons of thermostable enzymes to normal homologs
(Fig. 4). We chose thermostable p450 orthologs identified
by (22) (Fig. 4, A and B) as well as Taq polymerase
compared to the Klenow fragment in Escherichia coli
(E. coli) (Fig. 4 C). We found that a similar mechanism of
thermostability evolved in all cases. When the N- or C-ter-
minal end of the protein lies near the surface and is lacking
secondary structure, the sequence divergence observed
conveys a great deal of local thermostability, as shown by
the darker red regions of dampened atom fluctuation. We
also included an example of a thermostabilizing effect of
a bioengineered disulfide bridge in a phage T4 lysozyme
(23) (Fig. 4 D). Our result seems to contradict the original
results of this study, showing a large region of dampened

https://www.youtube.com/channel/UCJTBqGq01pBCMDQikn566Kw
https://www.youtube.com/channel/UCJTBqGq01pBCMDQikn566Kw


FIGURE 4 Comparison of protein dynamics of

several thermostable and wild-type enzymes. (A)

Sulfolobus p450 cytochrome is compared to

Pseudomonas (PDB: 1t2b and 1phd), and (B)

Citrobacter p450 cytochrome is compared to

Pseudomonas (PDB: 1f4t – 1phd). (C) Taq DNA

polymerase and an E. coli Klenow fragment are

shown here, and (D) the effect of a bioengineered

disulfide bond in lysozyme is shown here. The dif-

ferences in atom fluctuation (i.e., dFLUX) are color

scaled: green indicates amplified motion, and red

indicates dampened motion. (A)–(C) exhibit stron-

gest thermostability (i.e., darkest red) near the ter-

minal ends of the protein, especially when these

regions lack secondary structure and are near the

protein surface. For more details about (A) and

(B), see (22).
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atom fluctuation near the disulfide bond. As this original
study only examined crystallographic temperature factors
and not MD, and because it is well known that disulfide
bridges stabilize protein structure, our finding is perhaps
not surprising. We show a similar stabilization result using
proinsulin as an example on our YouTube channel.

For our last example, we examined the functional bio-
physical consequences of mutation in serine protease
paralogs (i.e., gene duplication events, Fig. 5, A–C) and a
well-studied cancer mutation (V600E) on the B-RAF kinase
oncogene (17,24) (Fig. 5, D–F). The serine proteases we
compared—trypsin and pancreatic elastase—exhibit large
sequence divergence and also relatively small but significant
changes in functional divergence in terms of atom fluctua-
tion (dFLUX). In contrast, the functional changes to the
B-RAF kinase are much more considerable even though
the only sequence differences are due to the well-known
valine-to-glutamine change in the activation loop of the ki-
nase domain and an additional alanine-to-lysine mutation
elsewhere on the chain. Because of their locations and
amino acid characteristics, both of these mutations might
be expected to shift the hydrophobicity of the protein. Our
results indicate a relatively large global destabilization of
the B-RAF kinase, indicated by the large increase of atom
fluctuation over the whole structure. The original study re-
ported that whereas the growth pathway in which B-RAF
was involved is effectively less regulated, the B-RAF pro-
tein is often rendered less functional (17). Our analysis
indicating the destabilization of the kinase would be
congruent with previous results. We ran this analysis three
times on two different machines and confirmed the same
MD result each time. It seems that large protein destabiliza-
tions may be a common cause of low mutational tolerances
in proteins with disease-causing malfunctions because of
nonsynonymous mutation, as originally theorized by Linus
Pauling many years ago (25). We have observed this signif-
icant global protein destabilization of atom fluctuation as a
common underlying effect of the few disease-related muta-
tions we have analyzed thus far (i.e., with cystic fibrosis and
melanoma in particular but also to a lesser effect with
Huntington’s disease and amyloid-related prion disease;
see Table 1). We hope our software will allow medical
researchers to examine this possibility more easily, directly,
and frequently in relation to the many specific molecular
details of disease.
Current and future uses for DROIDS

The potential uses for making protein comparisons with
DROIDS are many. Some ideas we have imagined during
its development include not only the visualization of the
functional effects of natural mutation at the protein
sequence level but also the potential cost-saving computa-
tional screening of the effects of site-directed mutagenesis
by the pharmaceutical industry. Further investigation into
human population variation associated with disease-related
malfunction (i.e., nonsynonymous single-nucleotide vari-
ants (nsSNVs)) might also be analyzed, particularly with
respect to determining molecular phenomena that drive
personal genomic differences in mutational tolerance
(20) and drug response in clinical trials. The functional
impacts of many more posttranslational modifications
(e.g., disulfide bridging or phosphorylation) and epigenetic
modifications to chromatin (e.g., histone acetylation and
methylation) will also be of considerable interest when
run on larger computers that can handle larger molecular
Biophysical Journal 114, 1009–1017, March 13, 2018 1015



FIGURE 5 Comparison of evolutionary effects on protein dynamics. (A) The change in atom fluctuation (dFLUX) due to gene duplication in serine pro-

teases (compares trypsin PDB: 2ptn to pancreatic elastase PDB: 3est) is shown. (B) Shown are the p-values of the KS tests, with blue indicating significant

change. (C) Shown is the R graphical output revealing the average FLUX (top), dFLUX (middle), and KS statistics (bottom) as a function of amino acid

position. (D)–(F) show the same results for destabilization of a B-RAF kinase by two cancer mutations (yellow).
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systems. We have demonstrated here that the functional
consequences of natural evolutionary divergences created
through the processes of speciation, gene duplication,
and genetic drift and/or genomic decay can be compared
in a pairwise manner. However, future releases might
include methods of distinguishing selection from drift
based upon randomization tests (26–28). The study of
functional binding interactions (protein-ligand, protein-
DNA, and protein-protein) may also be possible upon
future versioning that can simultaneously analyze larger
multichain systems.

We have shown that null comparisons are also potentially
useful. These are when the exact duplicate copies of the
same PDB files are compared through DROIDS. Because
MD can diverge wherever the system does not settle into po-
tential energy wells, a null comparison on a single structure
using DROIDS can show users where the MD is potentially
failing to replicate reproducible biophysics. This can be
particularly useful for demonstrating and testing the efficacy
1016 Biophysical Journal 114, 1009–1017, March 13, 2018
of newly developed force fields and for identifying where on
a given structure the scientific inferences made with existing
force fields are most sound.

We hope to engage students at our home institutions as
well as the open-source development community on GitHub
to design future editions of DROIDS that are more specific
to particular areas of interest in molecular evolutionary
biology (e.g., chromatin dynamics, transcription factor
binding function, and ATP and/or GTP protein activation).
The immediate future development of DROIDS will
incorporate GPU-accelerated MD conducted using the
open-source OpenMM libraries (29) as well as Amber16
and AmberTools17. We openly invite the open-source com-
munity and gaming enthusiasts to be creative with our code
repository and work toward leveraging the enormous
computing resources collectively held by the personal
computer gaming community toward our future goal of
simulation-based comparative ‘‘microscopy’’ that can be
managed by the everyday computer user.
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