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Abstract 

Traditional information theoretic analysis of functionally conserved binding interactions described by 

multiple sequence alignments are unable to provide direct insights into the underlying strength, spatial 

distribution, and coordination of the biophysical motions that govern protein binding interactions during 

signaling and regulatory function. However, molecular dynamic (MD) simulations of proteins in bound 

vs. unbound conformational states can allow for the combined application of machine learning 

classification and information theory towards many problems posed by comparative protein dynamics. 

After both bound and unbound protein dynamic states are adequately sampled in MD software, they 

can be employed as a comparative training set for a binary classifier capable of discerning the complex 

dynamical consequences of protein binding interactions with DNA or other proteins. The statistical 

validation of the learner on MD simulations of homologs can be used to assess its ability to recognize 

functional protein motions that are conserved over evolutionary time scales. Regions of proteins with 

functionally conserved dynamics are identifiable by their ability to induce significant correlations in local 

learning performance across homologous MD simulations. Through case studies of Rbp subunit 4/7 

interaction in RNA Pol II and DNA-protein interactions of TATA binding protein, we demonstrate this 

method of detecting functionally conserved protein dynamics. We also demonstrate how the concepts 

of relative entropy (i.e. information gain) and mutual information applied to the binary classification 

states of MD simulations can be used to compare the impacts of molecular variation on conserved 

dynamics and to identify coordinated motions involved in dynamic interactions across sites.  

 

Keywords – molecular dynamics, machine learning, functional conservation, molecular evolution, 

information theory, protein allostery 

 

Introduction 

All variety of functions of living organisms are defined by dynamic processes that proceed over a vast 

multitude of size and time scales. At the systems level, a biological organism can be defined by a 

dynamic network of genetic and environmental interactions. Within this network are dynamic signaling 

pathways that form feedbacks to create temporary homeostatic stable states. In turn, each of these 

pathways is comprised of many dynamic molecular encounters between protein, nucleic acid and small 

molecule structures that bind to one another via weak and strong chemical bonding interactions. And 

finally, each one of these biomolecules is itself a rapidly dynamic conformation of soft matter that is 

thermally responsive to continuous alteration of its local solvated environment. Therefore, the study of 

biological function within living systems would seem to require a thorough analysis of the time series of 

molecular structural conformation (i.e. molecular dynamics), ultimately providing the biologist a 

dynamic perspective on functional molecular phenotypes. The process of organic evolution also works 

across these scales by first slowly accumulating chemical mutations that affect the rapid dynamics of 

molecular processes, and then selecting the resulting self-organized complex phenotypes that are more 

fit and fixing them within populations. Therefore, we should expect that when the molecular dynamics 

of a given protein is functionally adaptive in some way, it should produce a tendency to move in a non-

random and specifically directed way, much like a machine, that is readily distinguishable from thermal 

noise imparted by its solvent environment. It should also preserve this characteristic motion over deep 
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evolutionary time. Therefore, when protein sequences are functionally conserved over evolutionary 

time scales (i.e. millions of years), we should expect to also see molecular dynamics that are conserved 

over very short functional time scales (i.e. nanoseconds) as well.         

 Unfortunately, this necessary molecular dynamic perspective on biological function has been 

relegated to only a few computationally heavy fields in biology (i.e. biophysics, computational 

biochemistry and systems biology), and is still largely ignored by a mainstream biology that maintains a 

methodological focus on the comparative interpretation of static representations of biomolecular 

sequences, sequence annotations and protein structures housed within ever-growing online databases.  

While molecular biology has often been generally defined as the subset of biochemistry in which 

information can be substantiated and manipulated (Davies; Schrödinger and Penrose 1992; Davies et al. 

2013; Walker and Davies 2013), the concept of information in biology has often been historically 

disconnected from its mathematical relationship with randomness in thermodynamics (Shannon 1948) 

and further muddied with mathematically undefined terminology like information ‘flow’, ‘transfer’ or 

‘processing’ (Cobb 2013) when referring to the molecular templating involved in the replication of DNA, 

the transcription of DNA to RNA and the translation of RNA to protein. Fortunately one exception has 

been the common application of information theory to multiple alignments of binding sequences 

(Schneider et al. 1986; Schneider and Stephens 1990).  We feel there is room to expand the 

mathematical formalism that already exists around this concept of information content embodied in 

functionally conserved biomolecular sequences to the concept of information embodied within 

functionally conserved motions in biomolecular dynamic simulations as well. We would go further to 

argue that analyses that largely ignore dynamics, rooted only upon a sequence representation of 

molecular biology will continue to potentially obscure a very large component of latent functional 

variability that connects the genotype to the phenotype through the scaling of self-organized dynamic 

physicochemical processes that build the complex body forms and functions that biologists define as life 

(Babbitt et al. 2016).  

While all-atom and coarse-grained molecular dynamic studies are often used to address 

functional chemistry and thermodynamics of many biomolecular systems, the lack of widespread 

adoption of dynamic simulation by the mainstream disciplines of biology can perhaps be linked to both a 

lack of standard statistical analytical methods for comparing molecular dynamic simulations to each 

other as well as this lack of a connection between information theory and molecular dynamics as they 

apply to biological systems.  Comparative methods are central to laboratory experimentation in 

molecular biology, and the information-theoretical perspective applied to DNA sequences continues to 

enable major advances in the fields of genomics and molecular evolution that have developed in parallel 

with major advances in modern sequencing technologies.  Concurrent technological advances in 

computer hardware have also allowed larger, longer and more highly parameterized (i.e. accurate) 

molecular dynamic simulations (Götz et al. 2012; Salomon-Ferrer et al. 2013), and now greatly enhance 

our ability to investigate the link between molecular dynamics and evolutionarily-conserved function 

(Babbitt et al. 2014, 2016, 2018a, 2020b).  However, very few methods and software currently exist 

allowing the exploration of function and evolution through the combination of machine learning and 

molecular dynamics simulation (Babbitt et al. 2018b, 2020a; Pérez et al. 2018; Wang et al. 2020).  Here, 

we propose a generalizable method of employing machine learning-based classification of functional 

dynamics under the same information theoretic framework that has proven so useful for the 

comparative analysis of multiple-aligned protein and DNA sequences (Schneider et al. 1986; Schneider 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 10, 2020. . https://doi.org/10.1101/2020.05.29.089003doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.089003
http://creativecommons.org/licenses/by-nd/4.0/


and Stephens 1990). Our method allows for the detection of functionally conserved dynamic motions 

using comparative molecular dynamic simulations of proteins in different functional states, without the 

need to resort to additional sequence-based molecular evolutionary analyses (Bakan et al. 2014). While 

sequence-based tests of selection can readily identify adaptively altered or functionally constrained 

sequences in genomes, unless they are complimented with functional studies, structural analysis, or 

physical simulations they generally fail to identify what exactly are the specific protein functions are the 

target of natural selection (Graur et al. 2013; Doolittle et al. 2014). Comparative molecular dynamic 

statistical methods inherently capture specific protein function that is defined by non-random machine-

like motion in the protein system.  When paired with information theoretics applied to molecular 

genetic variants, comparative molecular dynamics can potentially supply a more complete functional 

evolutionary picture of variation within protein space. Information theoretics applied to binary machine 

learning classifications of molecular dynamic simulations can also allow for identification of coordinated 

motions across sites caused by structural symmetries and/or allosteric interactions.  Here, we first 

present a general computational protocol and an information theoretical framework for analyzing 

functionally conserved and coordinated motions of proteins by applying machine learning to molecular 

dynamic simulation. We then offer two case studies employing this new approach by analyzing the 

binding interaction of the Rbp4/7 subunits of RNA Pol II; a well-studied protein interaction involving 

Rbp4 N and C terminal domains, well conserved at the sequence level, and connected by a non-

conserved linker region with strikingly different lengths in humans and yeast. We find a strong similarity 

between functionally conserved dynamic regions of Rbp4 discovered by our method, and functionally 

validated regions of sequence conservation reported by others (Armache et al. 2003, 2005; Sampath et 

al. 2003; Meka et al. 2005; Sharma et al. 2006; Zhao et al. 2012).  We supplement this with an analysis of 

functional DNA interaction of the human TATA binding protein, highlighting a pervasive dynamic 

interactions that share mutual information across all sites of the protein when in its DNA bound state.          

Methods 

A practical simulation protocol for identifying local regions of proteins with functionally conserved 

dynamics 

We outline a general protocol for combining molecular dynamics simulation software with machine 

learning packages for general programming languages with a goal of detecting functionally conserved 

protein dynamics related to functional binding interactions. Note: this is also the protocol implemented 

in our most recent software release (Babbitt et al. 2020a). Throughout the rest of the article we 

abbreviate this protocol as FCDA (Functionally Conserved Dynamic Analysis) 

A) Utilizing one of several popular molecular dynamic (MD) simulation software suites (e.g. Amber, 

NaMD, Charm or OpenMM), generate two large ensembles of MD production runs for training 

one or more machine learning classifiers. Each ensemble should represent a functional state of 

the molecular system under investigation (e.g. bound vs unbound state of a protein that 

interacts with a nucleic acid, another protein, or a functional small molecule ligand such as ATP).  

See Figure 1A. To avoid pseudo-replication and to mitigate the potential driving effects of the 

initial conditions of the simulation, each MD production run should start at a different point in 

time.  

B) Extract one or more features of the dynamics for training using vector trajectory analysis 

software such as ptraj or cpptraj (Roe and Cheatham 2013).  Features for analysis might include 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 10, 2020. . https://doi.org/10.1101/2020.05.29.089003doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.089003
http://creativecommons.org/licenses/by-nd/4.0/


both directionless features representing local vibration/flexibility (e.g. root mean square atom 

fluctuation) and/or directional features of vectors representing dynamic changes in protein 

shape as the simulations progress (e.g. XYZ vector distances to a central feature of the protein 

or solvent box). These data should be extracted over many time slices to compose a univariate 

or multivariate feature vector for the chosen machine learning classification model. See 

equation 4 in (Babbitt et al. 2020a). 

C) At single amino acid resolution, train one or more machine learning classifiers implemented in R 

or Python on these features (i.e. the feature vector) and calculate their overall learning 

performance on new MD production runs that represent one of the two training states of the 

simulation. NOTE: learning performance calculations and information content are inter-related 

as they both rely upon the probability of classification into one group versus the other.  In 

simple terms, learning performance of algorithms will increase when there is information about 

the motions of functional states to be learned (Figure 1B). At this point one can validate the 

effectiveness of the training by conducting a new MD validation run on the functional bound 

state of the protein and calculate local frequencies of correct classification at each residue 

across the whole protein.   

D) To identify local regions with significant functionally conserved dynamics, calculate the local 

correlation of learning performance on two or more of the MD validations conducted in step C 

using a sliding window (Figure 1B). The MD validations can be conducted upon identical 

structures if the underlying motivation of the research question is functional. Alternatively, the 

MD validations can be conducted upon ortholog structures of identical size (i.e. complete 

homology) if the underlying motivation of research question is focused upon how evolution has 

maintained function over time. The statistical significance of this local correlation can be used to 

call significance to the mapping of functionally conserved dynamics. The logic here is simple. If 

dynamic states of local regions are occurring randomly due only to thermal noise, then learning 

performance will not locally correlate across MD validation runs.  However, if the local amino 

acid residues are inducing a non-random motion that is detectable by the learner, then a local 

correlation in the learning performance profile will be induced.  If multiple machine learners are 

used a canonical correlation analysis and associated significance via Wilk’s lambda can be used 

within the sliding window (Härdle and Simar 2007)(Figure 1C).   Multiple test correction for false 

discovery rate should also be employed to adjust p-values in accordance for the number of sites 

on the protein (Benjamini and Hochberg 1995).  Thus local regions with functionally conserved 

dynamics can be mapped as either sequence annotations or color mapped protein structures. 

A common information theoretic framework for functional binding or protein sequences and the 

dynamics of their interactions  

The concept of information in relation to entropy is derived from Shannon’s work ‘The mathematical 

theory of information’ (Shannon 1948). 

Shannon Information content (I) is defined as  

𝐼 = 𝐼𝑚𝑎𝑥 − 𝐻 (1) 

Where Imax is the maximum information content allowed and H is Shannon entropy observed and is 

defined as 
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𝐻 = − ∑ 𝑝𝑖 ∗ log2(𝑝𝑖)

𝑀

𝑖=1

 (2) 

Where p is a set of discrete probabilities of i symbols from a set of possible discrete states (e.g. an 

alphabet) of size M, used to communicate a message over a discrete channel with noise (Shannon 1948).  

When applied to a multiple sequence alignment of binding sites of a protein coding DNA sequence, 

where the frequencies of nucleobases are taken as estimates these discrete probabilities, the 

information content at a given site in the DNA sequence follows (Schneider et al. 1986) 

 

𝐼 = 𝑙𝑜𝑔2 (4) − 𝐻 = 2 − 𝐻 (3) 

where 

𝐻 = − ∑ 𝑓(𝑏, 𝐿) ∗ log2 𝑓(𝑏, 𝐿)

4

𝑏=𝐴,𝑇,𝐶,𝐺

 (4) 

where f(b,L) is frequency of a given nucleobase (b) at position (L) in the best alignment  or 

𝑓(𝑏, 𝐿) = (∑ 𝑏

𝑁

𝑖=1

) /𝑁 (5) 

and where N is the number of aligned sequences. 

This is the method that underpins the height of letter base symbols on the vertical Y axis in the 

well-known sequence logos plot (Schneider and Stephens 1990). And this approach can be applied to 

characters representing proteins by replacing the 4 possible nucleobase character states with the 20 

possible amino acid character states. To obtain information for a given sequence rather than a given 

position within a sequence, one can average the information gained (i.e. entropy lost) by the best 

alignment over the whole sequence, assuming the frequencies of the nucleobases occurring at sites are 

independent. Therefore, the information content represents the total entropy lost as the best alignment 

of the sequences representing the functional site is obtained.  Regions of distantly related genomes with 

high functional conservation will maintain high information content when aligned, as these regions are 

where purifying selection has not allowed random nucleobase changes to accumulate over deep 

evolutionary time scales.  

Now if information can be imagined within the context of biomolecular sequences that 

represent a binding interaction, we need to now ask whether we can imagine something similar in the 

context of molecular motion, or dynamics, over shorter time scales as well.  In many ways, the notion of 

a molecular form changing over time is much more amenable to Shannon’s original mathematical 

conceptualization of communication signal that also plays out over a relatively short time and must be 

distinguished from random noise.  In our case, the motions of protein can be also defined in terms of 

‘signal’ represented by the repeated micro-machine like motions that directly relate to a protein binding 

function, and ‘noise’ represented by random thermal motions caused by the continuous random 

collision events of solvent molecules hitting the protein.  Protein function is most often defined by its 
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binding interactions with nucleic acids, signaling molecules or other proteins, so if we could watch the 

molecular dynamics of a protein in two functional states (e.g. bound and unbound to a particular 

binding partner in a signal transduction pathway), and later apply machine learning to identify these 

functional dynamic states when the protein dynamics is restarted from different initial or novel 

conditions, then we might define the local information content in a functional dynamic context for the 

motion of a given residue on the protein as    

𝐼 = 𝑙𝑜𝑔2 (2) − 𝐻 = 1 − 𝐻 (6) 

where 

𝐻 = − ∑ 𝑓(𝑐, 𝐿) ∗ log2 𝑓(𝑐, 𝐿)

2

𝑐=0,1

 (7) 

and where f(c,L) is the frequency of binary classification (c) assigned by a machine learner properly 

trained to recognize the dynamics of the functional state (e.g. 1 = bound, 0 = unbound) at residue 

location (L) taken over (T) a set of discrete time slice intervals through the total length of the molecular 

dynamic simulation.  Therefore, the frequency of classification returned upon the deployment of a 

learner on a molecular dynamic simulation is 

𝑓(𝑐, 𝐿) = ( ∑ 𝑐

𝑇

𝑡=50𝑝𝑠

) /𝑇 (8) 

where t is the length of any given time slice interval (50 picoseconds by default) and T is the total 

number of time slice intervals in the simulation.   An average frequency of 0.5 (i.e. the mid-point 

between 0 and 1), is therefore indicative if either a poorly trained learner or a lack of local functional 

dynamic information to be learned from a given molecular dynamic simulation.  

Modern supervised machine learning algorithms are designed to derive classification states 

when trained on adequate amounts of real data, and molecular dynamics simulations are capable of 

producing large amounts of data on simulated motion due to its necessity to take very small step sizes. 

Hypothetically, if one applies any proper machine learning method of classification, trained on the 

simulations of functional dynamic states of interest, one can determine local information regarding 

functionally conserved protein dynamics without resorting to traditional sequence-based bioinformatics. 

Note that because the training classes are completely specified, the term 𝑓(𝑐, 𝐿) is equivalent to a 

traditional measure of machine learning performance where the sum of true positive and true negative 

classifications divided by the sum of all total classifications (i.e. true positive/negative and false 

positive/negative). It is important to also note, that learners should be applied independently to the 

dynamics of individual amino acids as it is at this resolution of single amino acid replacement, that 

purifying selection will act over deep time.  

Mutual information between local learning performance profiles on independent identical simulations 

can identify regions of proteins with significantly functionally conserved dynamics 

Assuming a machine learner is adequately trained on each amino acid to successfully discern local 

differences in functional dynamics states (i.e. when the protein is bound to a functional partner or not), 

then we can imagine running new simulation repeatedly in one of the two functional states (i.e. bound 
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or unbound) and assessing whether local peaks in learning performance are correlated in their position 

along the protein backbone as opposed to just random in position. If local molecular dynamic motions of 

atoms are not functional as defined by the learner, there should be no local positional peaks in the 

learning performance or f(c,L) (Figure 1C).  In this situation the average frequency of classification 

should be 0.5. Random thermal differences and random sampling events in new identically prepared 

simulations will not allow independent learning profiles collected from the same sort of simulation to be 

correlated.  But if non-random functional motions are present on the protein backbone and the local 

learners can classify them according to functional states upon which the were trained, then only 

sampling errors will create local differences in learning performance causing correlated profiles in 

subsequent validation runs (Figure 1D).  When multiple machine learning methods are used to reduce 

any artifacts caused by the sensitivity of a particular method of machine learning classification, then a 

multivariate or canonical correlation analysis (CCA) is required.  High local R values from the CCA, 

generating Wilk’s lambda with a significant p-value can be used to call or map regions with significantly 

high local non-random dynamics associated with function (in most cases a specific binding interaction). 

Given two vectors representing classification states (0,1) called from n different machine learning 

methods where X = {x1, x2, …xn} and Y = {y1, y2, …yn} and new variables U and V defined via linear 

combinations of X and Y, the CCA seeks to find the highest canonical correlation (CC) by maximizing   

𝐶𝐶 = 𝑐𝑜𝑟𝑟(𝑈, 𝑉) =
𝑐𝑜𝑣(𝑈, 𝑉)

√𝑣𝑎𝑟(𝑈) ∗ √𝑣𝑎𝑟(𝑉)
(9) 

One can see great similarity of eqn 9 to mutual information in eqn. 16.  Thus the CCA essentially defines 

the local mutual behavior of homologous amino acid residue dynamics between two MD validation runs. 

From a functional evolutionary perspective, this mutual dynamic behavior identified by the learner can 

only arise from non-random or molecular machine-like motion that is recurrent in the time scale of the 

simulation. It can be implied that the ability of a protein to conduct this motion must be also conserved 

over deep evolutionary time scales as well. In summary, the machine learning performance of a binary 

classification algorithm, well trained on the functionally bound and unbound dynamic states of a given 

protein, can be utilized to identify functionally conserved protein dynamics in both time and space. And, 

because the output of this analysis is binary (i.e. 0 and 1), information theory can be subsequently 

applied to address many interesting problems that involve comparative differences in dynamics across 

sites or states, as well as the coordination of dynamic states across distances define by the protein’s 

structure.  

Other applications of information theory to molecular dynamics 

The information theoretic concept of relative entropy (also called discrimination information, 

information gain, or Kullback-Leibler divergence) (Kullback and Leibler 1951) can be very useful when 

applied to comparative questions about molecular dynamics in different functional or genetic states.  In 

essence, the relative entropy can be conceptualized as a distance measure between two distributions of 

interest that is sensitive to the difference in mean, spread and shape between distributions. It can be 

applied to direct pairwise comparisons of the distributions of the dynamic motions themselves, or 

alternatively it can be applied to comparisons of local correlations in machine learning performance (i.e. 

information content) in validation MD runs in order to assess the impacts of molecular variation on 

functionally conserved dynamics. This molecular variation can represent different genetic mutations, 
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chemical epigenetic alterations variations in small molecule binding interaction (i.e. any molecular 

variation of interest in the simulation of a solvated protein system).   

A) Relative entropy between local protein motions related to functional dynamic states 

The Kullback-Leibler divergence or relative entropy between two discrete probability distributions P and 

Q on probability space X is given by    

𝐷𝐾𝐿 = ∑ 𝑃(𝑥)

𝑥∈𝑋

log (
𝑃(𝑥)

𝑄(𝑥)
) (10) 

The symmetric form is the Jenson-Shannon divergence which defines the similarity between the two 

distributions 

𝐷𝐽𝑆 =
1

2
𝐷𝐾𝐿(𝑃||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀) (11) 

where M = ½(P+Q) 

The relative entropy (RE) or similarity between the root mean square fluctuation (rmsf) of two 

homologous atoms moving in two molecular dynamic simulations representing a functional binding 

interaction (i.e. where 0 = unbound state and 1 = bound state) can similarly be described by  

𝑅𝐸𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 = ∑ [(𝑟𝑚𝑠𝑓0 ∗ log
𝑟𝑚𝑠𝑓0

𝑟𝑚𝑠𝑓1
) + (𝑟𝑚𝑠𝑓1 ∗ log

𝑟𝑚𝑠𝑓1

𝑟𝑚𝑠𝑓0
)]

𝑇

𝑡=50𝑝𝑠

𝑇⁄  (12) 

 

where rmsf represents the average root mean square deviation of a given atom over time t. More 

specifically, the rmsf is a directionless root mean square fluctuation sampled over an ensemble of MD 

runs with similar time slice intervals. Because mutational events in evolution most often replace entire 

residues, this calculation is more useful if applied to resolution of single amino acids rather than single 

atoms. Because only the 4 protein backbone atoms (N, Cα, C and O) are homologous between residues, 

the R groups or side chains are ignored in the calculation and the following equation can be applied.  

Because the sidechain atoms always attach to this backbone, rmsf still indirectly samples the dynamic 

effect of amino acid sidechain replacement as they are still present in the simulation.  

𝑅𝐸𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 = ∑ ∑ [(𝑟𝑚𝑠𝑓0 ∗ log
𝑟𝑚𝑠𝑓0

𝑟𝑚𝑠𝑓1
) + (𝑟𝑚𝑠𝑓1 ∗ log

𝑟𝑚𝑠𝑓1

𝑟𝑚𝑠𝑓0
)]

4

𝑖=𝑁,𝐶,𝐶𝛼 ,𝑂

/8 𝑇⁄

𝑇

𝑡=50𝑝𝑠

 (13) 

 

When applied to the entire protein and standardized for protein size, relative entropy can be calculated 

as 

𝑅𝐸𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 =  ∑ ∑ ∑ [(𝑟𝑚𝑠𝑓0 ∗ log
𝑟𝑚𝑠𝑓0

𝑟𝑚𝑠𝑓1
) + (𝑟𝑚𝑠𝑓1 ∗ log

𝑟𝑚𝑠𝑓1

𝑟𝑚𝑠𝑓0
)] /

4

𝑗=𝑁,𝐶,𝐶𝛼,𝑂

8 𝑇/𝑅⁄

𝑇

𝑡=50𝑝𝑠

 

𝑅

𝑖=1

(14) 

where R is the number of amino acid residues in the protein. 
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B) Relative entropy between conserved dynamic states of variants 

When experimenting with in silico site-directed mutagenesis or with differently docked small molecule 

ligands, it may be more useful to compare the impacts of these variants on the functionally conserved 

dynamics (defined previously) rather than features like rmsf representing on the total dynamics. This is 

important as not all dynamics may be related to the protein function.  The relative entropy between the 

local self-correlation in learning performance (i.e. functional dynamic information contributing to 

learning performance of the two validation runs) and each variants correlation to the validation run can 

prove useful for comparing the functional dynamic impacts of each molecular variant.  

𝑅𝐸𝑣𝑎𝑟𝑖𝑎𝑛𝑡 = ∑ 𝐶𝐶𝑠𝑒𝑙𝑓 ∗ log
𝐶𝐶𝑠𝑒𝑙𝑓

𝐶𝐶𝑣𝑎𝑟𝑖𝑎𝑛𝑡

𝑟

𝑖=1

(15) 

Where CC is a canonical correlation analysis of learning performance profiles along length of the protein 

comparing two identical MD validation runs (i.e. CCself) or a variant to one of the validations (i.e. CCvariant).  

Empirical p-values for determining if genetic variants or drug classes differ significantly can be easily 

generated by randomization tests conducted with bootstrapped frequencies of classification (i.e. 

learning performance) generated by the time slices of MD variant runs. 

C) Mutual information and coordinated dynamics  

Mutual information (or trans-information) (Shannon 1948; Kullback and Leibler 1951) is defined as the 

relative entropy between the joint distribution or co-occurrence of two events A and B and the product 

distributions of their individual occurrence. Thus 

 

𝑀𝐼 = 𝑃(𝐴, 𝐵) ∗ log 
𝑃(𝐴, 𝐵)

𝑃(𝐴) ∗ 𝑃(𝐵)
(16) 

where P is the probability of two events A and B that may or may not occur independently 

If we were to consider the co-occurrence of the functional dynamic classification states over 

time on any two sites of the protein, we can use mutual information to identify concerted dynamic 

functions between functional protein sites.  This can potentially be very useful for the study of dynamics 

of proteins with bilateral binding symmetry (Matsunaga et al. 2012; Schulze et al. 2014) or allosteric 

regulation (Motlagh et al. 2014). If the dynamics of two neighboring sites or even two distant sites are 

locked together in time, they will exhibit higher degrees of mutual information.  Therefore, following the 

machine learning-based functional dynamic analysis outlined above, a mutual information (MI) matrix 

calculated over all functionally conserved sites can identify regions where neighboring and/or more 

distant sites exert influence over each other’s dynamic function.   

The mutual information between two functional dynamic classification states (0=unbound and 1=bound) 

at any two given residue sites (r1 and r2) calculated over t time intervals can be calculated as  

𝑀𝐼 =
1

2
[ ∑ 𝑓(0𝑟1 , 0𝑟2) ∗ log 

𝑓(0𝑟1 , 0𝑟2)

𝑓(0𝑟1) ∗ 𝑓(0𝑟2)
+ ∑ 𝑓(1𝑟1 , 1𝑟2) ∗ log 

𝑓(1𝑟1 , 1𝑟2)

𝑓(1𝑟1) ∗ 𝑓(1𝑟2)

𝑇

𝑡=50𝑝𝑠

𝑇

𝑡=50𝑝𝑠

]   (17) 
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A case study of the functionally conserved dynamic analysis (FCDA) of the RNA polymerase II Rbp4 

subunit 

Here we demonstrate the efficacy of our proposed method of functionally conserved dynamic analysis 

(FCDA), using molecular dynamic simulations of the bound and unbound states of Rbd4, the fourth 

largest subunit of RNA polymerase II.  Rbd4 functionally binds Rdb7 within the RNA pol II structure 

(Figure 2A) and has well characterized conserved regions in the N and C terminus connected by a non-

conserved linker region (Figure 2B).  Functional studies in yeast mutants have established clear links 

between many functional yeast phenotypes and deletions in these regions. We used our FCDA protocol 

above to examine whether functionally conserved dynamics would be associated with the functionally 

conserved sequence regions previously established by the work of (Sampath et al. 2003). For 

comparison, we compared this protein-protein interaction to a DNA-protein interaction in the form of 

human TATA binding protein (TBP) bound to DNA (Nikolov et al. 1996).  

PDB structure preparation and MD simulation protocols 

Structures of the human and yeast Rbp4 bound to Rbp7 were obtained from the Protein Data Bank 

(PDB). These were PDB ID: 2c35 and 1y14 respectively (Armache et al. 2003, 2005; Meka et al. 2005).  

We similarly obtained human TBP structure (PDB: 1cdw). Large ensembles of graphic processing unit 

(GPU) accelerated molecular dynamic simulations were prepared and conducted using the particle mesh 

Ewald method employed by pmemd.cuda in Amber18 (Case et al. 2005; Salomon-Ferrer et al. 2013) via 

the DROIDS v3.8 interface (Detecting Relative Outlier Impacts in Dynamic Simulation) (Babbitt et al. 

2018b, 2020a). Simulations were run on a Linux Mint 19 operating system mounting two Nvidia Titan Xp 

graphics processors. Explicitly solvated protein systems were prepared using tLeAP (Ambertools18) 

using the ff14SB protein force field (Maier et al. 2015). For TBP, we also loaded the DNA.OL15 force field 

(Dans et al. 2017). Solvation was generated using the Tip3P water model (Mao and Zhang 2012) in a 

12nm octahedral water box and subsequent charge neutralization with Na+ and Cl- ions. After energy 

minimization, heating to 300K, and 10ns equilibration, an ensemble of 200 MD production runs each 

lasting 0.5 ns of time were created for both bound and unbound Rbp4 in both the yeast and human MD 

analysis. Each MD production run was preceded by a single random length short spacing run selected 

from a range of 0 to 0.25ns to mitigate the effect of chaos (i.e. sensitively to initial conditions) in the 

driving ensemble differences in the MD production runs (Babbitt et al. 2020a). All MD was conducted 

using an Andersen thermostat (Andersen 1980) under constant pressure of one atmosphere. Root mean 

square atom fluctuations (rmsf) were calculated using the atomicfluct function in CPPTRAJ (Roe and 

Cheatham 2013).  All color maps on protein structures were produced in UCSF Chimera (Pettersen et al. 

2004).   

Functionally Conserved Dynamic Analysis (FCDA) of bound and unbound states protein subunits 

within RNA Polymerase II and DNA-bound and unbound states of TATA binding protein 

The signed symmetric relative entropy between the distributions of atom fluctuation (i.e. root mean 

square fluctuation or rmsf taken from 0.01 ns time slices of total MD simulation time) on bound and 

unbound protein states were computed using our program DROIDS and color mapped to the protein 

backbone with individual amino acid resolution to the bound structures using a temperature scale (i.e. 

where red is hot or amplified fluctuation and blue is cold or dampened fluctuation). The reference state 
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of the protein is unbound while the query state is bound. Therefore, this pairwise comparison is used to 

represent the functional impact of Rbp7 binding on the Rbp4 protein’s normal unbound motion, where 

it is expected that contacts would typically dampen the fluctuation of atoms around the binding 

interface to measurable degree. In the case of TATA binding protein (TBP), the functional dynamic 

comparison was comprised of DNA bound to TBP and unbound TBP, again where it is expected that DNA 

binding should dampen the atom fluctuation to some degree.  Functionally conserved dynamics were 

determined using the method outlined previously with a stacked machine learning model that included 

7 classification methods to classify rmsf time series values into either ‘bound’ or ‘unbound’ 

classifications. The classifiers included K nearest neighbors, naïve Bayes, linear discriminant function, 

quadratic discriminant function, support vector machine, random forest and adaptive boosting.  

Significant canonical correlations in the 7 local machine learner performance profiles were determined 

using Wilk’s lambda and color mapped to dark gray regions on the bound Rbp4 and TBP structures. A 

mutual information matrix to map coordinated classifications of dynamic states over time between all 

amino acid residue pairs was also calculated. All software used to produce all statistical and graphical 

output is part of a comprehensive package DROIDS/maxDemon version 3.8 available at GitHub 

(https://github.com/gbabbitt/DROIDS-3.0-comparative-protein-dynamics) and our software website 

(https://people.rit.edu/gabsbi/) and its domain (http://proteindynamics.net).  The data used to 

generate all the figures is deposited at https://zenodo.org/record/3820675#.XtZiRDpKhPY.  

Results  

FCDA case study in RNA Polymerase II 

The relative entropy in residue backbone rmsf between Rbp7 bound Rbp4 and unbound Rbp4 dynamic 

states (i.e. eqn. 13) revealed common patterns of dampening in atom fluctuation (i.e. rapid harmonic 

motion) in both human and yeast. In accordance with the prediction from the functional work of 

Sampath et al (2003), both of our in silico comparative dynamics experiments show more functional 

dampening of atom motion in the conserved N and C terminal regions with less dampened motion in the 

non-conserved central linker regions (Figure 3). Note that the linker region is much larger in yeast, and 

our patterns of dampened atom fluctuation reflect this as well (Figure 3B).   The most dampened motion 

coincides consistently with Rbp4’s contact surface with Rbp7 (Figure 4) which proportionally comprises a 

much larger fraction of the protein in human Rbp4 (Figure 4A-C) than yeast (Figure 4 D-F) and best 

compared in the side profiles (Figure 4B and 4E).  The machine learning profiles (i.e. frequency term in 

eqn. 8) on the Rbp7 bound Rbp4 MD validation runs (Figure 5A/5C) indicate that motions indicative of 

functional binding were very well classified (i.e. recognized by the learning model) in the same regions 

showing more dampened motion or large negative relative entropy in Figures 3. This indicates that our 

machine learning classifier was able to recognized differences in rmsf related to functional binding 

between the two subunits of RNA Pol II.  Significant Wilk’s lambda for canonical correlations indicate 

regions of functionally conserved dynamics that correspond very well with regions of dampened rmsf 

upon binding (Figure 3) and the functionally conserved regions associated with the Rbp4/7 interface 

identified by (Sampath et al. 2003)(Figure 5B and 5 D). The yeast linker region which is largely non-

conserved at the sequence level according to Sampath (Sampath et al. 2003) shows very little conserved 

dynamics according to our method (Figure 5D). The human Rbp4, which lacks the large linker region, 

exhibits much more conserved dynamics throughout the protein (Figure 5B). The mapping of 

functionally significantly conserved dynamic regions to the Rbp4 structures also indicates that Rbp4 
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linker regions more distant from the Rbp7 interface are far less likely to be classified by learners as 

having a role in functional binding than Rbp4 region interacting more directly with the binding interface 

(Figure 6).  Significance tests on the relative entropy of rmsf and R values derived from canonical 

correlations of machine learning profiles correspond roughly with the 10 period moving average of 

sequence-based Shannon information (r = 0.487/0.484 for human/yeast Rbp4) indicating that much of 

the Rbp4 protein sequence information maintained across distant taxonomic groups is contributing to 

the maintenance of functionally conserved dynamic motion related to Rbp7 binding (Supplemental 

Figure 1).  Lastly, mutual information matrices (eqn. 17, Figure 7) indicate that time coordinated 

dynamic motions between amino acid residues are quite prevalent in the non-conserved linker regions 

of Rbp4, and that this is more readily apparent in the central linker region of yeast Rbp4 (Figure 7C) than 

in human Rbp4 (Figure 7B) or random control (Figure 7A).  

FCDA case study in TATA binding protein 

We conducted an identical FCDA analysis comparing the dynamics of DNA bound TBP to its unbound 

form (Figure 8).  Relative entropy calculations indicated where the major groove contacts of TBP are 

(Figure 8A and 8B).  The machine learning analysis of multiple validation runs on DNA bound TBP 

indicated very high and significant canonical correlations in machine learning recognition of binding 

state across almost the entire structure of TBP (Figure 8C). A mutual information matrix also indicated 

very high levels of time coincidental classifications of indicating very strong coordination of functional 

dynamic states across the whole structure of TBP (Figure 8D).  As the DNA binding partner of TBP is 

much more rigid than the Rbp7 protein binding partner to Rbp4, there is consequently much more 

mutual information between the functional classifications of dynamics between different protein sites.  

Discussion 

We have introduced an information theoretical formalism and a general protocol for adapting machine 

learning classification applied to molecular dynamics simulation towards the task of identifying 

functionally conserved and coordinated motions in proteins.  While molecular dynamics simulations are 

traditionally computationally heavy, this method can now easily be accelerated on modern graphics 

processors and potentially allows the molecular biologist to step beyond the functional abstraction of 

information contained in sequences, and to directly analyze information content in the functional 

motion of proteins in accurate biophysical simulations.  This allows for the definition of functional 

conservation within the known context of specific function of the proteins under investigation. Because 

machine learning classification binary digitizes molecular dynamic output, it allows information theory 

to be analytically applied in a variety of useful ways for discerning random thermal events (i.e. entropy) 

from non-random motion (i.e. function) in the context of protein interactions with other proteins, 

nucleic acids or small molecules.  This protocol can now be implemented in the latest releases of our 

labs software website https://people.rit.edu/gabsbi/  or http://proteindynamics.net and published 

software notes (Babbitt et al. 2018b, 2020a). The information theoretics incorporated in the latest 

release of DROIDS+maxDemon version 3.8 include all the methods introduced here, including the 

comparison of rmsf between functional states via relative entropy, the identification of functionally 

conserved dynamics (FCDA) in new MD runs, the comparison of relative impacts of variants on 

conserved dynamics via relative entropy, and the identification of coordinated dynamic motions across 

sites on the protein via the calculation of a mutual information matrix.    
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We have demonstrated the efficacy of this information theory based machine learning approach 

to identifying conserved dynamics by using simulations of functional binding in the well-understood 

Rbp4/7 subunit interaction in RNA polymerase II. Our method can quantify differences in local dynamics 

using relative entropy calculations and can recognize and map regions of local conserved dynamics by 

identifying non-random local learning performance peaks indicative of functional training states that 

defined the relative entropy calculations. Most importantly, our results computationally confirm the 

main functionally conserved relationships of the N and C terminal regions investigated through prior 

sequence analysis and site-directed mutagenesis studies (Todone et al. 2001; Sampath et al. 2003; 

Sharma et al. 2006; Zhao et al. 2012). We also demonstrate that the pairwise calculation of mutual 

information can be used to identify time coordinated dynamics even in regions where sequences and 

binding dynamics are not conserved (e.g. linker regions).  Site-directed mutagenesis studies on Rbp4 

have indicated that some mutations in non-conserved regions can have functional effects on phenotype. 

Linker regions that are not conserved at the sequence level can still have important physical function 

imparted by structural rigidity. By isolating time-coordinated molecular dynamics between sites, our 

mutual information matrices capture this feature of linker regions very well.   

Our analyses of TATA binding protein (TBP) also showed the potential effectiveness of our 

computational approach in illuminating important functional dynamics. First of all, the relative entropy 

calculation on atom fluctuation (rmsf) highlights the locations of major groove contacts very well, and 

quantifies the binding effect as much larger than the rest of the protein. Second, this analysis also 

indicates that the whole structure of TBP is dampened in its motion during binding even outside of these 

major groove contacts, and this dampening is largely a function of any given protein atom’s proximity to 

the DNA.  The realization that nearly all of the TBP protein is functionally involved in binding is also 

confirmed by the machine learning performance analysis and identifies almost the whole TBP structure 

as exhibiting significantly functionally conserved protein dynamics. Lastly, the mutual information matrix 

of all pairwise amino acid residues indicates very high levels of time coincident machine classification of 

functional dynamics states in the validation runs, even across very distant parts of the protein.  This 

suggests that, unlike Rbp4, which binds the softer matter of Rbp7 and in two distinct regions separated 

by a linker section, the much higher rigidity of DNA is likely involved in coordinating long range dynamic 

correlations in concerted motion across the whole TBP structure when it is in its DNA bound state. Thus, 

the lack of a designated non-conserved linker region in TBP, combined with the rigidity of its DNA 

binding partner, creates very large degree of mutual dynamics when compared to Rbp4, which only 

seems to show mutual dynamics in its linker region. Our method captures this aspect of shared 

dynamics very well.  

Molecular biologists typically investigate molecular function by discovering DNA/protein 

sequences and then conducting a series of expensive laboratory studies that probe function via 

experimental manipulation of these sequence changes.  While protein structures and molecular 

phylogenetic analyses are often characterized as part of this pipeline, very rarely is computer simulation 

of dynamic motion of protein structure ever employed. However, this is beginning to change as more 

molecular evolutionary studies are beginning to include molecular dynamics simulations in their 

repertoire (Saldaño et al. 2016; Biagini et al. 2018; Campbell et al. 2018; Dong et al. 2018; Johansson and 

Lindorff-Larsen 2018; Otten et al. 2018; Adams et al. 2020). Methods of biophysical simulation of 

protein dynamics have been under continuous development for many decades. However, most of the 

questions addressed through simulation are physical rather than comparative in nature. The lack of a 
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common comparative method for molecular dynamics data has been problematic. The complexity and 

size of the data sets that these simulations produce is also quite challenging. Many reviews of best 

practices in molecular dynamics often warn users of the danger of comparisons based upon inadequate 

sampling, but seldom offer proper statistical framework to mitigate this problem (Grossfield et al. 2018; 

Braun et al. 2019). Recently, our lab has developed a platform for statistical comparison and machine 

learning applications to molecular dynamics (Babbitt et al. 2018b, 2020a). Here, we have broadened this 

application under an information theoretical framework to comparative dynamics that has the potential 

to illuminate the functional consequences of molecular changes at an all-atom resolution that cannot be 

achieved with traditional molecular biology.  Our computational protocol helps to solve an important 

problem of scale in molecular biology; the investigation of functional molecular motions at the very 

rapid time scales and very small size scales at which it occurs. It also offers the ability to connect these 

very rapid short time scales to the very long time scales of molecular evolution. Frameworks where 

machine learning is applied to molecular dynamic simulation can allow proper investigation of this 

complex and largely invisible process involving time scales that are not easy for humans to directly 

observe.   
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Figure 1. A visual analogy of Functionally Conserved Dynamic Analysis (FCDA) applied to a 

hypothetical ensemble of protein simulations in two functional states (RNA POL II subunit Rbp4 bound 

to Rbp7 and Rbp4 in its unbound state).  (A) Functional motion is evolutionarily conserved in non-

random state and can be recognized by machine learning classification. (B) Local learning performance 

increases in functional regions of the protein and (C) can be mathematically retrieved by canonical 

correlation analysis of independent molecular dynamic validation runs. 
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Figure 2. The functional binding of Rbp4 within RNA Pol II. (A) The 12 unit RNA Pol II (PDB: 1wcm) 

highlighting the relative positions of subunits Rbp4 and Rbp7 (PDB: 1y14) where the comparative 

molecular dynamics analysis of Rbp4 implemented.  (B) The 10 period smoothed Shannon information 

content for the multiple sequence alignment of Rbp4 from Sampath et al. 2003. The alignment includes 

Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Drosophila melanogaster, 

and Homo sapiens. 
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Figure 3. Quantifying the functional binding interaction of Rbp4/7 within RNA Pol II with a signed 

symmetric Kullback-Leibler distance  (i.e. relative entropy of eqn. 13) comparing root mean square 

fluctuation (rmsf) of protein backbone for Rbp7 bound Rbp4 and unbound Rbp4 subunits of RNA Pol II in 

both (A) Homo sapiens and (B) yeast Saccharomyces cerevisiae. Note that more negative KL divergences 

or dFLUX indicates a stronger functional binding interaction between Rbp7 and Rbp4.     
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Figure 4. Imaging the functional binding interaction of Rbp4/7 within RNA Pol II with color mapping of 

signed symmetric Kullback-Leibler distance (i.e. relative entropy of eqn. 13) from Figure 3 in (A-C) front, 

side and back profiles of human Rbp4 and (D-F) the identical profiles for yeast, S cerevisiae.  Note: Rbp4 

is the dFLUX surface mapped structure while Rbp7 is indicated with lavender ribbon.  
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Figure 5. Functionally conserved dynamics of Rbp4 identified via local canonical correlation analysis of 

multi-machine learning performance profiles in (A-B) humans and (C-D) yeast, S. cerevisiae.  Machine 

learning performance profiles (frequency term in eqn. 8) were generated in two independent molecular 

dynamics validation runs on Rbp7 bound Rbp4 (red and blue lines) using multiple classification methods 

including K-nearest neighbor, naïve Bayes, linear discriminant analysis, quadratic discriminant analysis, 

support vector machine, random forest and adaptive boosting (A and C).  The local R value for the 

canonical correlation is shown over an 18 residue sliding window (orange line in B and D) and its regions 

with significant correlation (i.e. determined via Wilk’s lambda) is demarcated using gray shading under 

the green line.   
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Figure 6. Mapping of functionally conserved dynamics of Rbp4 identified via local canonical 

correlation analysis of multi-machine learning performance profiles in (A-C) humans and (D-F) yeast, 

S. cerevisiae.  Local regions of Rbp4 with significant functionally conserved dynamic interaction (eqn. 9) 

with Rbp7 (blue ribbon) are mapped in dark gray.      
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Figure 7. Mutual information matrices for (A) a null example with very little dynamic differences to 

learn and examples of Rbp7 bound Rbp4 in (B) humans and (C) yeast, S. cerevisiae.  Black tiles indicate 

no matching of classification of functional dynamic states between two given amino acid residues (i.e. 

no mutual information from equation 17) while white indicates complete matching of dynamic states 

(i.e. total mutual information from equation 17). The machine learning classifier in these examples was a 

parameter tuned support vector machine with polynomial kernel.  
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Figure 8. Functionally conserved dynamic analysis (FCDA) and the associated information theoretics 

for human TATA binding protein in DNA-bound and unbound functional states (PDB: 1cdw) showing 

(A) negative relative entropy associated with binding that is also (B) color mapped to the DNA bound 

protein structure. Note that blue regions indicate dampened protein atom fluctuations associated with 

functional binding. Yellow arrows indicate loop structures that interact with DNA major groove.   (C) 

Functionally conserved dynamics regions are determined via significant Wilk’s lambda value (p<0.01) 

determined from canonical correlation analysis of machine learning validation profiles within 30 residue 

sliding window.  Conserved dynamics are indicated by dark grey regions in both the plot and the 

structure (inset image).  (D) A mutual information matrix indicating where functional dynamic 

classifications coincide over time is also shown. Lighter tiles indicate high degree of time dependent 

mutual information in functional dynamic classifications between amino acid pairs.  
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Supplemental Figure A. Co-occurrence of sequence-based Shannon information content and 

functionally conserved molecular dynamics of Rbp4/7 interaction within RNA Pol II.  The Shannon 

information (black lines) was calculated using the multiple sequence alignment of Sampath et al. 2003. 

The metrics of functionally conserved dynamics (R values) and maximum statistical differences in the 

empirical cumulative distributions of root mean square fluctuation of Rbp4 in bound versus unbound 

states (D values) are shown as colored lines for comparison.  Note that zero values indicate large gaps in 

the main alignment where yeast linker sequence is not represented in human sequence. 
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